Create README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
1c7f01c1c7
commit
27301373ab
1 changed files with 77 additions and 0 deletions
77
numpy/dimensions/README.md
Normal file
77
numpy/dimensions/README.md
Normal file
|
@ -0,0 +1,77 @@
|
|||
# Dimensions and shape
|
||||
{:.no_toc}
|
||||
|
||||
<nav markdown="1" class="toc-class">
|
||||
* TOC
|
||||
{:toc}
|
||||
</nav>
|
||||
|
||||
## The goal
|
||||
|
||||
|
||||
|
||||
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||
|
||||
## [numpy.ndarray.shape](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html)
|
||||
|
||||
```python
|
||||
ndarray.shape
|
||||
```
|
||||
|
||||
> Tuple of array dimensions.
|
||||
>
|
||||
> The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
data = np.zeros((2, 4, 2, 7, 2))
|
||||
print(data.shape) # -> (2, 4, 2, 7, 2)
|
||||
```
|
||||
|
||||
## Vanishing dimensions
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
data = np.zeros((5, 3, 2))
|
||||
|
||||
# All the same dimensionwise
|
||||
print(data.shape) # -> (5, 3, 2)
|
||||
print(data[:].shape) # -> (5, 3, 2)
|
||||
print(data[:, :, :].shape) # -> (5, 3, 2)
|
||||
print(data[...].shape) # -> (5, 3, 2)
|
||||
|
||||
|
||||
print(data[0, :, :].shape) # -> (3, 2)
|
||||
print(data[:, 0, :].shape) # -> (5, 2)
|
||||
print(data[:, :, 0].shape) # -> (5, 3)
|
||||
|
||||
print(data[:, 0, 0].shape) # -> (5,)
|
||||
print(data[0, :, 0].shape) # -> (3,)
|
||||
print(data[0, 0, :].shape) # -> (2,)
|
||||
|
||||
print(data[0, 0, 0].shape) # -> ()
|
||||
print(type(data[0, 0, 0])) # -> <class 'numpy.float64'>
|
||||
```
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
data = np.zeros((5, 3, 2))
|
||||
|
||||
# All the same dimensionwise
|
||||
print(data.shape) # -> (5, 3, 2)
|
||||
print(data.sum().shape) # -> ()
|
||||
print(data.sum(axis=0).shape) # -> (3, 2)
|
||||
print(data.sum(axis=1).shape) # -> (5, 2)
|
||||
print(data.sum(axis=2).shape) # -> (5, 3)
|
||||
|
||||
# You can use keepdims:
|
||||
|
||||
print(data.sum(axis=0, keepdims=True).shape) # -> (1, 3, 2)
|
||||
print(data.sum(axis=1, keepdims=True).shape) # -> (5, 1, 2)
|
||||
print(data.sum(axis=2, keepdims=True).shape) # -> (5, 3, 1)
|
||||
```
|
||||
|
||||
|
Loading…
Reference in a new issue