Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
e6eed9ea79
commit
35dd8fafaf
1 changed files with 280 additions and 7 deletions
|
@ -284,13 +284,13 @@ Operations you will see that are not explained yet:
|
|||
|
||||
|||
|
||||
|---|---|
|
||||
|[network.train()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.train)| : "Sets the module in training mode."|
|
||||
|[optimizer.zero_grad()](https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html)| : "Sets the gradients of all optimized [torch.Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)s to zero." For every mini batch we (need to) clean the gradient which is used for training the parameters. |
|
||||
|[optimizer.step()](https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step)| : "Performs a single optimization step (parameter update)."|
|
||||
|[loss.backward()](https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html)| : "Computes the gradient of current tensor w.r.t. graph leaves."|
|
||||
|[lr_scheduler.step(train_loss)](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau)| : After an epoch the learning rate (might be) changed. For other [Learning rate scheduler](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) .step() might have no parameter.|
|
||||
|[network.eval()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.eval)| : "Sets the module in evaluation mode."|
|
||||
|[with torch.no_grad():](https://pytorch.org/docs/stable/generated/torch.no_grad.html)| : "Context-manager that disabled gradient calculation."|
|
||||
|[network.train()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.train)| "Sets the module in training mode."|
|
||||
|[optimizer.zero_grad()](https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html)| "Sets the gradients of all optimized [torch.Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)s to zero." For every mini batch we (need to) clean the gradient which is used for training the parameters. |
|
||||
|[optimizer.step()](https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.step.html#torch.optim.Optimizer.step)| "Performs a single optimization step (parameter update)."|
|
||||
|[loss.backward()](https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html)| "Computes the gradient of current tensor w.r.t. graph leaves."|
|
||||
|[lr_scheduler.step(train_loss)](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau)| After an epoch the learning rate (might be) changed. For other [Learning rate scheduler](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) .step() might have no parameter.|
|
||||
|[network.eval()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.eval)| "Sets the module in evaluation mode."|
|
||||
|[with torch.no_grad():](https://pytorch.org/docs/stable/generated/torch.no_grad.html)| "Context-manager that disabled gradient calculation."|
|
||||
|
||||
|
||||
```python
|
||||
|
@ -498,6 +498,279 @@ for epoch_id in range(0, number_of_epoch):
|
|||
tb.close()
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```python
|
||||
Epoch: 0
|
||||
Training: Loss=1029.10439 Correct=75.78%
|
||||
Testing: Correct=88.61%
|
||||
Time: Training=8.6sec, Testing=0.6sec
|
||||
|
||||
Epoch: 1
|
||||
Training: Loss=959.81828 Correct=86.48%
|
||||
Testing: Correct=89.26%
|
||||
Time: Training=8.1sec, Testing=0.5sec
|
||||
|
||||
[...]
|
||||
|
||||
Epoch: 48
|
||||
Training: Loss=881.60049 Correct=99.20%
|
||||
Testing: Correct=99.04%
|
||||
Time: Training=9.2sec, Testing=0.5sec
|
||||
|
||||
Epoch: 49
|
||||
Training: Loss=881.40331 Correct=99.23%
|
||||
Testing: Correct=99.26%
|
||||
Time: Training=9.4sec, Testing=0.4sec
|
||||
```
|
||||
|
||||
## MNIST with Adam, ReduceLROnPlateau, cross-entropy on GPU
|
||||
|
||||
Here a list of the changes:
|
||||
|
||||
Added to the beginning
|
||||
|
||||
```python
|
||||
assert torch.cuda.is_available() is True
|
||||
device_gpu = torch.device("cuda:0")
|
||||
```
|
||||
|
||||
Network after its creating moved to the GPU
|
||||
|
||||
```python
|
||||
network = torch.nn.Sequential([...]).to(device=device_gpu)
|
||||
```
|
||||
|
||||
During training
|
||||
|
||||
```python
|
||||
output = network(train_processing_chain(image).to(device=device_gpu))
|
||||
|
||||
loss = loss_function(output, target.to(device_gpu))
|
||||
|
||||
train_loss += loss.item()
|
||||
train_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||
```
|
||||
|
||||
During testing
|
||||
|
||||
```python
|
||||
output = network(test_processing_chain(image).to(device=device_gpu))
|
||||
|
||||
test_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||
```
|
||||
|
||||
Full source code:
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
|
||||
import torch
|
||||
import torchvision # type:ignore
|
||||
import numpy as np
|
||||
import time
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
assert torch.cuda.is_available() is True
|
||||
device_gpu = torch.device("cuda:0")
|
||||
|
||||
|
||||
class MyDataset(torch.utils.data.Dataset):
|
||||
# Initialize
|
||||
def __init__(self, train: bool = False) -> None:
|
||||
super(MyDataset, self).__init__()
|
||||
|
||||
if train is True:
|
||||
self.pattern_storage: np.ndarray = np.load("train_pattern_storage.npy")
|
||||
self.label_storage: np.ndarray = np.load("train_label_storage.npy")
|
||||
else:
|
||||
self.pattern_storage = np.load("test_pattern_storage.npy")
|
||||
self.label_storage = np.load("test_label_storage.npy")
|
||||
|
||||
self.pattern_storage = self.pattern_storage.astype(np.float32)
|
||||
self.pattern_storage /= np.max(self.pattern_storage)
|
||||
|
||||
# How many pattern are there?
|
||||
self.number_of_pattern: int = self.label_storage.shape[0]
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.number_of_pattern
|
||||
|
||||
# Get one pattern at position index
|
||||
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||
image = torch.tensor(self.pattern_storage[index, np.newaxis, :, :])
|
||||
target = int(self.label_storage[index])
|
||||
|
||||
return image, target
|
||||
|
||||
|
||||
# Some parameters
|
||||
input_number_of_channel: int = 1
|
||||
input_dim_x: int = 24
|
||||
input_dim_y: int = 24
|
||||
|
||||
number_of_output_channels_conv1: int = 32
|
||||
number_of_output_channels_conv2: int = 64
|
||||
number_of_output_channels_flatten1: int = 576
|
||||
number_of_output_channels_full1: int = 10
|
||||
|
||||
kernel_size_conv1: tuple[int, int] = (5, 5)
|
||||
kernel_size_pool1: tuple[int, int] = (2, 2)
|
||||
kernel_size_conv2: tuple[int, int] = (5, 5)
|
||||
kernel_size_pool2: tuple[int, int] = (2, 2)
|
||||
|
||||
stride_conv1: tuple[int, int] = (1, 1)
|
||||
stride_pool1: tuple[int, int] = (2, 2)
|
||||
stride_conv2: tuple[int, int] = (1, 1)
|
||||
stride_pool2: tuple[int, int] = (2, 2)
|
||||
|
||||
padding_conv1: int = 0
|
||||
padding_pool1: int = 0
|
||||
padding_conv2: int = 0
|
||||
padding_pool2: int = 0
|
||||
|
||||
network = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(
|
||||
in_channels=input_number_of_channel,
|
||||
out_channels=number_of_output_channels_conv1,
|
||||
kernel_size=kernel_size_conv1,
|
||||
stride=stride_conv1,
|
||||
padding=padding_conv1,
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.MaxPool2d(
|
||||
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
|
||||
),
|
||||
torch.nn.Conv2d(
|
||||
in_channels=number_of_output_channels_conv1,
|
||||
out_channels=number_of_output_channels_conv2,
|
||||
kernel_size=kernel_size_conv2,
|
||||
stride=stride_conv2,
|
||||
padding=padding_conv2,
|
||||
),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.MaxPool2d(
|
||||
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
|
||||
),
|
||||
torch.nn.Flatten(
|
||||
start_dim=1,
|
||||
),
|
||||
torch.nn.Linear(
|
||||
in_features=number_of_output_channels_flatten1,
|
||||
out_features=number_of_output_channels_full1,
|
||||
bias=True,
|
||||
),
|
||||
torch.nn.Softmax(dim=1),
|
||||
).to(device=device_gpu)
|
||||
|
||||
test_processing_chain = torchvision.transforms.Compose(
|
||||
transforms=[torchvision.transforms.CenterCrop((24, 24))],
|
||||
)
|
||||
|
||||
train_processing_chain = torchvision.transforms.Compose(
|
||||
transforms=[torchvision.transforms.RandomCrop((24, 24))],
|
||||
)
|
||||
|
||||
dataset_train = MyDataset(train=True)
|
||||
dataset_test = MyDataset(train=False)
|
||||
batch_size_train = 100
|
||||
batch_size_test = 100
|
||||
|
||||
train_data_load = torch.utils.data.DataLoader(
|
||||
dataset_train, batch_size=batch_size_train, shuffle=True
|
||||
)
|
||||
|
||||
test_data_load = torch.utils.data.DataLoader(
|
||||
dataset_test, batch_size=batch_size_test, shuffle=False
|
||||
)
|
||||
|
||||
# -------------------------------------------
|
||||
|
||||
# The optimizer
|
||||
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
|
||||
|
||||
# The LR Scheduler
|
||||
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
|
||||
|
||||
number_of_test_pattern: int = dataset_test.__len__()
|
||||
number_of_train_pattern: int = dataset_train.__len__()
|
||||
|
||||
number_of_epoch: int = 50
|
||||
|
||||
tb = SummaryWriter(log_dir="run")
|
||||
|
||||
loss_function = torch.nn.CrossEntropyLoss()
|
||||
|
||||
for epoch_id in range(0, number_of_epoch):
|
||||
print(f"Epoch: {epoch_id}")
|
||||
t_start: float = time.perf_counter()
|
||||
|
||||
train_loss: float = 0.0
|
||||
train_correct: int = 0
|
||||
train_number: int = 0
|
||||
test_correct: int = 0
|
||||
test_number: int = 0
|
||||
|
||||
# Switch the network into training mode
|
||||
network.train()
|
||||
|
||||
# This runs in total for one epoch split up into mini-batches
|
||||
for image, target in train_data_load:
|
||||
# Clean the gradient
|
||||
optimizer.zero_grad()
|
||||
|
||||
output = network(train_processing_chain(image).to(device=device_gpu))
|
||||
|
||||
loss = loss_function(output, target.to(device=device_gpu))
|
||||
|
||||
train_loss += loss.item()
|
||||
train_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||
train_number += target.shape[0]
|
||||
# Calculate backprop
|
||||
loss.backward()
|
||||
|
||||
# Update the parameter
|
||||
optimizer.step()
|
||||
|
||||
# Update the learning rate
|
||||
lr_scheduler.step(train_loss)
|
||||
|
||||
t_training: float = time.perf_counter()
|
||||
|
||||
# Switch the network into evalution mode
|
||||
network.eval()
|
||||
with torch.no_grad():
|
||||
for image, target in test_data_load:
|
||||
output = network(test_processing_chain(image).to(device=device_gpu))
|
||||
|
||||
test_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||
test_number += target.shape[0]
|
||||
|
||||
t_testing = time.perf_counter()
|
||||
|
||||
perfomance_test_correct: float = 100.0 * test_correct / test_number
|
||||
perfomance_train_correct: float = 100.0 * train_correct / train_number
|
||||
|
||||
tb.add_scalar("Train Loss", train_loss, epoch_id)
|
||||
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
|
||||
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
|
||||
|
||||
print(f"Training: Loss={train_loss:.5f} Correct={perfomance_train_correct:.2f}%")
|
||||
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
|
||||
print(
|
||||
f"Time: Training={(t_training-t_start):.1f}sec, Testing={(t_testing-t_training):.1f}sec"
|
||||
)
|
||||
torch.save(network, "Model_MNIST_A_" + str(epoch_id) + ".pt")
|
||||
print()
|
||||
|
||||
tb.flush()
|
||||
|
||||
tb.close()
|
||||
```
|
||||
|
||||
|
||||
## Mean square error
|
||||
|
||||
You might be inclined to use the MSE instead of the cross entropy.
|
||||
|
|
Loading…
Reference in a new issue