From 364f7917ebd30b41d9fce525264f2656896100e2 Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Sun, 18 Feb 2024 01:59:58 +0100 Subject: [PATCH] Create README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- .../spectral_coherence_scale/README.md | 266 ++++++++++++++++++ 1 file changed, 266 insertions(+) create mode 100644 data_analysis/spectral_coherence_scale/README.md diff --git a/data_analysis/spectral_coherence_scale/README.md b/data_analysis/spectral_coherence_scale/README.md new file mode 100644 index 0000000..f8c27a8 --- /dev/null +++ b/data_analysis/spectral_coherence_scale/README.md @@ -0,0 +1,266 @@ +# Linearize the spectral coherence +{:.no_toc} + + + +## Top + +Questions to [David Rotermund](mailto:davrot@uni-bremen.de) + +Let us assume we have two time series (white in spectrum) $x_1(t)$ and $x_2(t)$. Both are linearly mixed together via a mixing coefficent $\alpha$: + +$$y(t) = (1- \alpha) x_1(t) + \alpha * x_2(t)$$ + +Wouldn't it to be nice if the spectral coherence would be $\alpha$? + +For white times series with the length of infinity this can be achived via the transformation + +```python +coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0)) +``` +see [Attention Selectively Gates Afferent Signal Transmission to Area V4](https://www.jneurosci.org/content/38/14/3441) for details + +The emphesis lies on infinity and a white spectrum. For shorter time series the results might vary. + +![image0.png](image0.png) + +```python +import numpy as np +import matplotlib.pyplot as plt +import pywt # type: ignore +from tqdm import trange # type: ignore + + +# Calculate the wavelet scales we requested +def calculate_wavelet_scale( + number_of_frequences: int, + frequency_range_min: float, + frequency_range_max: float, + dt: float, +) -> np.ndarray: + s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( + frequency_range_max / frequency_range_min + ) + scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) + frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) + return 1.0 / (frequency_axis_request * dt) + + +def get_y_ticks( + reduction_to_ticks: int, frequency_axis: np.ndarray, round: int +) -> tuple[np.ndarray, np.ndarray]: + output_ticks = np.arange( + 0, + frequency_axis.shape[0], + int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), + ) + if round < 0: + output_freq = frequency_axis[output_ticks] + else: + output_freq = np.round(frequency_axis[output_ticks], round) + return output_ticks, output_freq + + +def get_x_ticks( + reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int +) -> tuple[np.ndarray, np.ndarray]: + time_axis = dt * np.arange(0, number_of_timesteps) + output_ticks = np.arange( + 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) + ) + if round < 0: + output_time_axis = time_axis[output_ticks] + else: + output_time_axis = np.round(time_axis[output_ticks], round) + return output_ticks, output_time_axis + + +def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray): + wave_scales = 1.0 / (frequency_axis * dt) + cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64) + return cone_of_influence + + +def mask_cone_of_influence( + complex_spectrum: np.ndarray, + cone_of_influence: np.ndarray, + fill_value: float = np.NaN, +) -> np.ndarray: + assert complex_spectrum.shape[0] == cone_of_influence.shape[0] + + for frequency_id in range(0, cone_of_influence.shape[0]): + # Front side + start_id: int = 0 + end_id: int = int( + np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1])) + ) + complex_spectrum[frequency_id, start_id:end_id] = fill_value + + start_id = np.max( + ( + complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1, + 0, + ) + ) + end_id = complex_spectrum.shape[1] + complex_spectrum[frequency_id, start_id:end_id] = fill_value + + return complex_spectrum + + +def calculate_wavelet_tf_complex_coeffs( + data: np.ndarray, + number_of_frequences: int = 25, + frequency_range_min: float = 15, + frequency_range_max: float = 200, + dt: float = 1.0 / 1000, +) -> tuple[np.ndarray, np.ndarray, np.ndarray]: + + assert data.ndim == 1 + t: np.ndarray = np.arange(0, data.shape[0]) * dt + + # The wavelet we want to use + mother = pywt.ContinuousWavelet("cmor1.5-1.0") + + wave_scales = calculate_wavelet_scale( + number_of_frequences=number_of_frequences, + frequency_range_min=frequency_range_min, + frequency_range_max=frequency_range_max, + dt=dt, + ) + + complex_spectrum, frequency_axis = pywt.cwt( + data=data, scales=wave_scales, wavelet=mother, sampling_period=dt + ) + + return (complex_spectrum, frequency_axis, t) + + +def calculate_spectral_coherence( + n_trials: int, + y_a: np.ndarray, + y_b: np.ndarray, + number_of_frequences: int, + frequency_range_min: float, + frequency_range_max: float, + dt: float, +) -> tuple[np.ndarray, np.ndarray, np.ndarray]: + + for trial_id in range(0, n_trials): + wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs( + data=y_a[..., trial_id], + number_of_frequences=number_of_frequences, + frequency_range_min=frequency_range_min, + frequency_range_max=frequency_range_max, + dt=dt, + ) + + wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs( + data=y_b[..., trial_id], + number_of_frequences=number_of_frequences, + frequency_range_min=frequency_range_min, + frequency_range_max=frequency_range_max, + dt=dt, + ) + + cone_of_influence = calculate_cone_of_influence(dt, frequency_axis) + + wave_data_a = mask_cone_of_influence( + complex_spectrum=wave_data_a, + cone_of_influence=cone_of_influence, + fill_value=np.NaN, + ) + + wave_data_b = mask_cone_of_influence( + complex_spectrum=wave_data_b, + cone_of_influence=cone_of_influence, + fill_value=np.NaN, + ) + + if trial_id == 0: + calculation = wave_data_a * np.conj(wave_data_b) + norm_data_a = np.abs(wave_data_a) ** 2 + norm_data_b = np.abs(wave_data_b) ** 2 + + else: + calculation += wave_data_a * np.conj(wave_data_b) + norm_data_a += np.abs(wave_data_a) ** 2 + norm_data_b += np.abs(wave_data_b) ** 2 + + calculation /= float(n_trials) + norm_data_a /= float(n_trials) + norm_data_b /= float(n_trials) + + coherence = np.abs(calculation) ** 2 / ((norm_data_a * norm_data_b) + 1e-20) + + return np.nanmean(coherence, axis=-1), frequency_axis, t + + +# Parameters for the wavelet transform +number_of_frequences: int = 3 # frequency bands +frequency_range_min: float = 5 # Hz +frequency_range_max: float = 200 # Hz +dt: float = 1.0 / 1000.0 + +# Test data -> +n_t: int = 10000 +n_trials: int = 100 + +# We select one frequency because all look the same for this white random signal +frequency_select: int = 1 + +rng = np.random.default_rng(1) +mother_time_series_a: np.ndarray = rng.random((n_t, n_trials)) +mother_time_series_a -= mother_time_series_a.mean(axis=0, keepdims=True) +mother_time_series_a /= mother_time_series_a.std(axis=0, keepdims=True) + +mother_time_series_b: np.ndarray = rng.random((n_t, n_trials)) +mother_time_series_b -= mother_time_series_b.mean(axis=0, keepdims=True) +mother_time_series_b /= mother_time_series_b.std(axis=0, keepdims=True) +# <- Test data + +alpha_vector: np.ndarray = np.linspace(0.0, 1.0, 11, endpoint=True) + + +for alpha_id in trange(0, alpha_vector.shape[0]): + + alpha: float = alpha_vector[alpha_id] + + y_a = mother_time_series_a.copy() + y_b = (1.0 - alpha) * mother_time_series_a + alpha * mother_time_series_b + + y_b -= y_b.mean(axis=0, keepdims=True) + y_b /= y_b.std(axis=0, keepdims=True) + + temp, frequency_axis, t = calculate_spectral_coherence( + n_trials=n_trials, + y_a=y_a, + y_b=y_b, + number_of_frequences=number_of_frequences, + frequency_range_min=frequency_range_min, + frequency_range_max=frequency_range_max, + dt=dt, + ) + + if alpha_id == 0: + coherence: np.ndarray = np.zeros((temp.shape[0], alpha_vector.shape[0])) + coherence[:, alpha_id] = temp + + +coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0)) + +plt.plot(alpha_vector, coherence[frequency_select, :], label="unscaled") +plt.plot(alpha_vector, coherence_scaled[frequency_select, :], label="scaled") +plt.plot([0.5, 0.5], [0, 1], "k--") +plt.plot([0, 1], [0.5, 0.5], "k--") +plt.ylabel("Spectral Coherence") +plt.xlabel("Mixture Coefficent") +plt.legend() +plt.show() +``` + + +