Create README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-08 14:37:48 +01:00 committed by GitHub
parent c788a93c93
commit 39dfe3a4d9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -0,0 +1,82 @@
## Cuda
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Convince PyTorch and Nvidia's GPUs working together. **I assume you installed the PyTorch and/or TensorFlow version for CUDA. (see Python installation instructions on thsi site...)**
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Windows
* Download and install [CUDA driver](https://developer.nvidia.com/cuda-downloads)
* Download and install [cuDNN toolkit](https://developer.nvidia.com/rdp/cudnn-download) (you will need to create an account :-( )
## Test the PyTorch
```python
import torch
torch.cuda.is_available()
```
Expected output:
```python
True
```
```python
torch.cuda.is_available()
```
Expected output:
```python
True
```
```python
torch.backends.cuda.is_built()
```
Expected output:
```python
True
```
```python
torch.backends.cudnn.version()
```
Expected output (number depends on the GPU generation and may be different):
```python
8904
```
```python
torch.backends.cudnn.enabled
```
Expected output:
```python
True
```
```python
my_cuda_device = torch.device('cuda:0')
print(torch.cuda.get_device_properties(my_cuda_device))
```
Expected output (values depend on the GPU generation):
```python
_CudaDeviceProperties(name='NVIDIA GeForce RTX 3060', major=8, minor=6, total_memory=12011MB, multi_processor_count=28)
```