Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-05 17:17:01 +01:00 committed by GitHub
parent f12158c9ad
commit 3dd8e51b4b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -729,3 +729,347 @@ Why can we do that? Well, **class BaseClassA**: is just a shorthand for **cla
[Object](https://docs.python.org/3/reference/datamodel.html#basic-customization) already provides us with some basic functionality like \_\_init\_\_ which is contained in all user custom classes (if not removed). 
## [ABC (Abstract Base Classes)](https://docs.python.org/3/library/abc.html#module-abc) and [@abstractmethod](https://docs.python.org/3/library/abc.html#abc.abstractmethod)
Maybe you need a placeholder for a future function but also want to make REALLY sure that the new class defines the function. For such a case you can use the base class ABC with @abstractmethod
Deliberately not working:
```python
from abc import ABC, abstractmethod
class BaseClassA(ABC):
@abstractmethod
def function_a(self):
pass
instance = BaseClassA() # -> TypeError: Can't instantiate abstract class BaseClassA with abstract method function_a
```
Also deliberately not working:
```python
from abc import ABC, abstractmethod
class BaseClassA(ABC):
@abstractmethod
def function_a(self):
pass
class BaseClassB(BaseClassA):
pass
instance = BaseClassB() # TypeError: Can't instantiate abstract class BaseClassB with abstract method function_a
```
This is working:
```python
from abc import ABC, abstractmethod
class BaseClassA(ABC):
@abstractmethod
def function_a(self):
pass
class BaseClassB(BaseClassA):
def function_a(self):
pass
instance = BaseClassB()
```
## Compositions -- Against the curse of dimensionality
While inherentence is a nice tool, it leads very fast to an explosion of specialized classes.
An alternative is the composition approach. Here a base class for a functionality is prepared with the required abstract placeholders. This base class is then inherented by classes that provide the required spectrum of functionality. Then a composition class is designed. During instancing the composition class we plug in the functionality we want. 
Hard to explain in words. Easy to show in an example: 
```python
from abc import ABC, abstractmethod
class BaseFunction(ABC):
@abstractmethod
def add_something(self, input: int) -> int:
pass
class AddOne(BaseFunction):
def add_something(self, input: int) -> int:
return input + 1
class AddTwo(BaseFunction):
def add_something(self, input: int) -> int:
return input + 2
class CompositionClass:
method_one: BaseFunction
method_two: BaseFunction
def __init__(self, method_one: BaseFunction, method_two: BaseFunction) -> None:
super().__init__()
self.method_one = method_one
self.method_two = method_two
def processing(self, input: int) -> int:
return self.method_two.add_something(self.method_one.add_something(input))
variant_a = CompositionClass(method_one=AddOne(), method_two=AddOne())
print(variant_a.processing(0)) # -> 2
variant_b = CompositionClass(method_one=AddTwo(), method_two=AddTwo())
print(variant_b.processing(0)) # -> 4
variant_c = CompositionClass(method_one=AddOne(), method_two=AddTwo())
print(variant_c.processing(0)) # -> 3
variant_d = CompositionClass(method_one=AddTwo(), method_two=AddOne())
print(variant_d.processing(0)) # -> 3
```
## [functools](https://docs.python.org/3/library/functools.html)
### [@cached_property](https://docs.python.org/3/library/functools.html#functools.cached_property) (not recommended)
I am not really a fan of this one. It allows you to cache calculations. However, this works only if the data behind the calculation doesn't change in any way, shape or form. If you change it then result is NOT updated. 
```python
from functools import cached_property
class SimpleClass:
_a: int
_b: int
def __init__(self):
self._a = 1
self._b = 2
@cached_property
def value_x(self):
return self._a + self._b
instance = SimpleClass()
print(instance.value_x) # -> 3
instance._a = 7
print(instance.value_x) # -> 3
```
### [partialmethod](https://docs.python.org/3/library/functools.html#functools.partialmethod)
Partialmethod allows you to create an alias for an already defined function but with partially pre-defined arguments:
```python
from functools import partialmethod
class SimpleClass:
def function_a(self, input_1: int, input_2: int) -> int:
return input_1 + input_2
add_one = partialmethod(function_a, 1)
instance = SimpleClass()
print(instance.function_a(1, 1)) # -> 2
print(instance.add_one(1)) # -> 2
```
## [Iterators](https://wiki.python.org/moin/Iterator)
Iterators are used in e.g. for loops. Iterators are classes that provide the methods [\_\_iter\_\_](https://docs.python.org/3/reference/datamodel.html#object.__iter__) and [\_\_next\_\_](https://docs.python.org/3/library/stdtypes.html#iterator.__next__) . \_\_iter\_\_ just returns itself. \_\_next\_\_ does something. If \_\_next\_\_ can not do anything more (e.g. because there is not more data) then it raises the exception StopIteration.
```python
class IterExample:
a_max: int
a: int
def __init__(self):
self.a_max = 10
self.a = 0
def __iter__(self):
return self
def __next__(self):
if self.a < self.a_max:
self.a += 1
else:
raise StopIteration
return self.a**2
instance = IterExample()
for i in instance:
print(i)
```
We can also use the iterator class manually via [next()](https://docs.python.org/3/library/functions.html#next):
```python
class IterExample:
a_max: int
a: int
def __init__(self):
self.a_max = 10
self.a = 0
def __iter__(self):
return self
def __next__(self):
if self.a < self.a_max:
self.a += 1
else:
raise StopIteration
return self.a**2
instance = IterExample()
print(next(instance)) # -> 1
print(next(instance)) # -> 4
print(next(instance)) # -> 9
print(next(instance)) # -> 16
print(next(instance)) # -> 25
print(next(instance)) # -> 36
print(next(instance)) # -> 49
print(next(instance)) # -> 64
print(next(instance)) # -> 81
print(next(instance)) # -> 100
print(next(instance)) # -> StopIteration:
```
## [Generators](https://docs.python.org/3/glossary.html#term-generator)
"A function which returns a [generator iterator](https://docs.python.org/3/glossary.html#term-generator-iterator). It looks like a normal function except that it contains [yield](https://docs.python.org/3/reference/simple_stmts.html#yield) expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the [next()](https://docs.python.org/3/library/functions.html#next) function."
Manually:
```python
def generator(start_value: int, end_value: int):
for i in range(start_value, end_value):
yield i**2
i = iter(generator(1, 11))
print(next(i)) # -> 1
print(next(i)) # -> 4
print(next(i)) # -> 9
print(next(i)) # -> 16
print(next(i)) # -> 25
print(next(i)) # -> 36
print(next(i)) # -> 49
print(next(i)) # -> 64
print(next(i)) # -> 81
print(next(i)) # -> 100
print(next(i)) # -> StopIteration:
```
Via for-loop:
```python
def generator(start_value: int, end_value: int):
for i in range(start_value, end_value):
yield i**2
for i in generator(1, 11):
print(i)
```
Output:
```python
1
4
9
16
25
36
49
64
81
100
```
## [dir](https://docs.python.org/3/library/functions.html#dir)
"Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list of valid attributes for that object."
```python
class BaseClassA:
a: int
def __init__(self):
super().__init__()
self.a = 1
def function_a(self):
pass
def function_b(self):
pass
print(dir(BaseClassA))
```
Output
```python
['__annotations__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'function_a', 'function_b']
```
If you look carefully through the list you will notice that the variable a is not there. The reason for this is that it doesn't exist until the instance is created:  
```python
class BaseClassA:
__slots__ = ["a"]
a: int
def __init__(self):
super().__init__()
self.a = 1
def function_a(self):
pass
def function_b(self):
pass
instance = BaseClassA()
print(dir(instance))
```
Output
Even with \_\_slots\_\_ use, now the variable a is included in the list: 
```python
['__annotations__', '__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', 'a', 'function_a', 'function_b']
```
## References
[Classes](https://docs.python.org/3/tutorial/classes.html)
[Objects: Special method names](https://docs.python.org/3/reference/datamodel.html#special-method-names)