mirror of
https://github.com/davrot/pytutorial.git
synced 2025-04-18 21:26:41 +02:00
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
262c80023e
commit
5185f529ac
1 changed files with 179 additions and 0 deletions
|
@ -405,6 +405,185 @@ A = np.array(1 + 0.5j)
|
|||
print(A.conj()) # -> (1-0.5j)
|
||||
```
|
||||
|
||||
|
||||
## [numpy.ndarray.sort](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html)
|
||||
|
||||
```python
|
||||
ndarray.sort(axis=-1, kind=None, order=None)
|
||||
```
|
||||
|
||||
> Sort an array **in-place**. Refer to numpy.sort for full documentation.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(0, 6)
|
||||
A = np.concatenate((A, A))
|
||||
|
||||
print(A) # -> [0 1 2 3 4 5 0 1 2 3 4 5]
|
||||
print()
|
||||
A.sort()
|
||||
print(A) # -> [0 0 1 1 2 2 3 3 4 4 5 5]
|
||||
```
|
||||
|
||||
## [numpy.ndarray.argsort](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html)
|
||||
|
||||
```python
|
||||
ndarray.argsort(axis=-1, kind=None, order=None)
|
||||
```
|
||||
|
||||
> Returns the indices that would sort this array.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(0, 6)
|
||||
A = np.concatenate((A, A))
|
||||
|
||||
print(A) # -> [0 1 2 3 4 5 0 1 2 3 4 5]
|
||||
print()
|
||||
idx = A.argsort()
|
||||
print(idx) # -> [ 0 6 1 7 2 8 3 9 4 10 5 11]
|
||||
```
|
||||
|
||||
## [numpy.ndarray.sum](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html)
|
||||
|
||||
```python
|
||||
ndarray.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
|
||||
```
|
||||
|
||||
> Return the sum of the array elements over the given axis.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(0, 6).reshape((2, 3))
|
||||
|
||||
print(A.sum()) # -> 15
|
||||
print(A.sum(axis=0)) # -> [3 5 7]
|
||||
print(A.sum(axis=0).shape) # -> (3,)
|
||||
print(A.sum(axis=1)) # -> [ 3 12]
|
||||
print(A.sum(axis=1).shape) # -> (2,)
|
||||
|
||||
print(A.sum(axis=0, keepdims=True))
|
||||
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)
|
||||
print()
|
||||
print(A.sum(axis=1, keepdims=True))
|
||||
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```python
|
||||
[[3 5 7]]
|
||||
|
||||
[[ 3]
|
||||
[12]]
|
||||
```
|
||||
|
||||
## [numpy.ndarray.cumsum](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html)
|
||||
|
||||
```python
|
||||
ndarray.cumsum(axis=None, dtype=None, out=None)
|
||||
```
|
||||
|
||||
> Return the cumulative sum of the elements along the given axis.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(0, 6).reshape((2, 3))
|
||||
|
||||
print(A)
|
||||
print()
|
||||
print(A.cumsum()) # -> [ 0 1 3 6 10 15]
|
||||
print(A.cumsum().shape) # -> (6,)
|
||||
print(A.cumsum(axis=0))
|
||||
print()
|
||||
print(A.cumsum(axis=0).shape) # -> (2, 3)
|
||||
print(A.cumsum(axis=1))
|
||||
print(A.cumsum(axis=1).shape) # -> (2, 3)
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```python
|
||||
[[0 1 2]
|
||||
[3 4 5]]
|
||||
|
||||
[[0 1 2]
|
||||
[3 5 7]]
|
||||
|
||||
[[ 0 1 3]
|
||||
[ 3 7 12]]
|
||||
```
|
||||
|
||||
## [numpy.ndarray.prod](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html)
|
||||
|
||||
```python
|
||||
ndarray.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
|
||||
```
|
||||
|
||||
> Return the product of the array elements over the given axis
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(1, 7).reshape((2, 3))
|
||||
|
||||
print(A)
|
||||
print(A.prod()) # -> 720
|
||||
print(A.prod().shape) # -> ()
|
||||
print(A.prod(axis=0)) # -> [ 4 10 18]
|
||||
print(A.prod(axis=0).shape) # -> (3,)
|
||||
print(A.prod(axis=1)) # -> [ 6 120]
|
||||
print(A.prod(axis=1).shape) # -> (2,)
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```python
|
||||
[[1 2 3]
|
||||
[4 5 6]]
|
||||
```
|
||||
|
||||
## [numpy.ndarray.cumprod](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html)
|
||||
|
||||
```python
|
||||
ndarray.cumprod(axis=None, dtype=None, out=None)
|
||||
```
|
||||
|
||||
> Return the cumulative product of the elements along the given axis.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
A = np.arange(1, 7).reshape((2, 3))
|
||||
|
||||
print(A)
|
||||
print()
|
||||
print(A.cumprod()) # -> [ 1 2 6 24 120 720]
|
||||
print(A.cumprod().shape) # -> (6,)
|
||||
print(A.cumprod(axis=0))
|
||||
print()
|
||||
print(A.cumprod(axis=0).shape) # -> (2, 3)
|
||||
print(A.cumprod(axis=1))
|
||||
print(A.cumprod(axis=1).shape) # -> (2, 3)
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```python
|
||||
[[1 2 3]
|
||||
[4 5 6]]
|
||||
|
||||
[[ 1 2 3]
|
||||
[ 4 10 18]]
|
||||
|
||||
[[ 1 2 6]
|
||||
[ 4 20 120]]
|
||||
```
|
||||
|
||||
## [Array methods](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-methods)
|
||||
|
||||
### [Array conversion](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-conversion)
|
||||
|
|
Loading…
Add table
Reference in a new issue