Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-15 10:35:43 +01:00 committed by GitHub
parent 262c80023e
commit 5185f529ac
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -405,6 +405,185 @@ A = np.array(1 + 0.5j)
print(A.conj()) # -> (1-0.5j)
```
## [numpy.ndarray.sort](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html)
```python
ndarray.sort(axis=-1, kind=None, order=None)
```
> Sort an array **in-place**. Refer to numpy.sort for full documentation.
```python
import numpy as np
A = np.arange(0, 6)
A = np.concatenate((A, A))
print(A) # -> [0 1 2 3 4 5 0 1 2 3 4 5]
print()
A.sort()
print(A) # -> [0 0 1 1 2 2 3 3 4 4 5 5]
```
## [numpy.ndarray.argsort](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html)
```python
ndarray.argsort(axis=-1, kind=None, order=None)
```
> Returns the indices that would sort this array.
```python
import numpy as np
A = np.arange(0, 6)
A = np.concatenate((A, A))
print(A) # -> [0 1 2 3 4 5 0 1 2 3 4 5]
print()
idx = A.argsort()
print(idx) # -> [ 0 6 1 7 2 8 3 9 4 10 5 11]
```
## [numpy.ndarray.sum](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html)
```python
ndarray.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
```
> Return the sum of the array elements over the given axis.
```python
import numpy as np
A = np.arange(0, 6).reshape((2, 3))
print(A.sum()) # -> 15
print(A.sum(axis=0)) # -> [3 5 7]
print(A.sum(axis=0).shape) # -> (3,)
print(A.sum(axis=1)) # -> [ 3 12]
print(A.sum(axis=1).shape) # -> (2,)
print(A.sum(axis=0, keepdims=True))
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)
print()
print(A.sum(axis=1, keepdims=True))
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)
```
Output:
```python
[[3 5 7]]
[[ 3]
[12]]
```
## [numpy.ndarray.cumsum](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html)
```python
ndarray.cumsum(axis=None, dtype=None, out=None)
```
> Return the cumulative sum of the elements along the given axis.
```python
import numpy as np
A = np.arange(0, 6).reshape((2, 3))
print(A)
print()
print(A.cumsum()) # -> [ 0 1 3 6 10 15]
print(A.cumsum().shape) # -> (6,)
print(A.cumsum(axis=0))
print()
print(A.cumsum(axis=0).shape) # -> (2, 3)
print(A.cumsum(axis=1))
print(A.cumsum(axis=1).shape) # -> (2, 3)
```
Output:
```python
[[0 1 2]
[3 4 5]]
[[0 1 2]
[3 5 7]]
[[ 0 1 3]
[ 3 7 12]]
```
## [numpy.ndarray.prod](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html)
```python
ndarray.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
```
> Return the product of the array elements over the given axis
```python
import numpy as np
A = np.arange(1, 7).reshape((2, 3))
print(A)
print(A.prod()) # -> 720
print(A.prod().shape) # -> ()
print(A.prod(axis=0)) # -> [ 4 10 18]
print(A.prod(axis=0).shape) # -> (3,)
print(A.prod(axis=1)) # -> [ 6 120]
print(A.prod(axis=1).shape) # -> (2,)
```
Output:
```python
[[1 2 3]
[4 5 6]]
```
## [numpy.ndarray.cumprod](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html)
```python
ndarray.cumprod(axis=None, dtype=None, out=None)
```
> Return the cumulative product of the elements along the given axis.
```python
import numpy as np
A = np.arange(1, 7).reshape((2, 3))
print(A)
print()
print(A.cumprod()) # -> [ 1 2 6 24 120 720]
print(A.cumprod().shape) # -> (6,)
print(A.cumprod(axis=0))
print()
print(A.cumprod(axis=0).shape) # -> (2, 3)
print(A.cumprod(axis=1))
print(A.cumprod(axis=1).shape) # -> (2, 3)
```
Output:
```python
[[1 2 3]
[4 5 6]]
[[ 1 2 3]
[ 4 10 18]]
[[ 1 2 6]
[ 4 20 120]]
```
## [Array methods](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-methods)
### [Array conversion](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-conversion)