From 5ed4aaba63b23551e79c291f34416a196ab2288e Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Fri, 5 Jan 2024 15:25:00 +0100 Subject: [PATCH] Create README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- pytorch/own_layer/README.md | 84 +++++++++++++++++++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 pytorch/own_layer/README.md diff --git a/pytorch/own_layer/README.md b/pytorch/own_layer/README.md new file mode 100644 index 0000000..56d8201 --- /dev/null +++ b/pytorch/own_layer/README.md @@ -0,0 +1,84 @@ +# Your own layer +{:.no_toc} + + + +## Top + +Questions to [David Rotermund](mailto:davrot@uni-bremen.de) + + +## Writing a layer based on linear + +I am rewriting the code for [Linear](https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear) as my own layer. + +\_\_init\_\_() : It contains a tensor for the weights and optionally a second tensor for the bias. Both tensors are wrapped within the torch.nn.Parameter class. This is necessary, otherwise the optimizer will not find them. Afterwards the tensors will be initialized via reset_parameters(self). + +reset_parameters(): I copied it from the original code. + +forward(): We get an input tensor and need to produce an output tensor. Please remember that dimension 0 contains the batch. Here we just multiply the input with the weights and add the bias to it (if available). + +extra_repr(): Plots the information about the layer in a nice fashion. + + +```python +import torch +import math + + +class MyOwnLayer(torch.nn.Module): + def __init__( + self, + in_features: int, + out_features: int, + bias: bool = True, + ) -> None: + super().__init__() + + assert in_features > 0 + assert out_features > 0 + + self.in_features: int = in_features + self.out_features: int = out_features + + self.weight = torch.nn.Parameter( + torch.empty( + (out_features, in_features), + ) + ) + if bias: + self.bias = torch.nn.Parameter( + torch.empty( + out_features, + ) + ) + else: + self.register_parameter("bias", None) + self.reset_parameters() + + def reset_parameters(self) -> None: + torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + if self.bias is not None: + fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) + bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 + torch.nn.init.uniform_(self.bias, -bound, bound) + + def forward( + self, + input: torch.Tensor, + ) -> torch.Tensor: + output = (self.weight.unsqueeze(0) * input.unsqueeze(1)).sum(dim=-1) + + if self.bias is not None: + output = output + self.bias.unsqueeze(0) + + return output + + def extra_repr(self) -> str: + return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}" +``` + +![image0](Figure_1,png)