Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
038a3a44a0
commit
6aa06dc955
1 changed files with 297 additions and 1 deletions
|
@ -69,7 +69,7 @@ Some example for array signatures are:
|
||||||
|numba.types.float32[::1,:]| 2d array of float32 with Fortran memory layout|
|
|numba.types.float32[::1,:]| 2d array of float32 with Fortran memory layout|
|
||||||
|numba.types.float32[::1,:,:]| 3d array of float32 with Fortran memory layout|
|
|numba.types.float32[::1,:,:]| 3d array of float32 with Fortran memory layout|
|
||||||
|
|
||||||
## An example (up to 437x faster)
|
## An example (up to 350x faster)
|
||||||
|
|
||||||
For measuring the time used by the program I ran everything twice and took the second time. I did this is because the just-in-time compilation takes a moment for the first call of a function.
|
For measuring the time used by the program I ran everything twice and took the second time. I did this is because the just-in-time compilation takes a moment for the first call of a function.
|
||||||
|
|
||||||
|
@ -501,3 +501,299 @@ if __name__ == "__main__":
|
||||||
print(f"{end_time-start_time:.5f} sec")
|
print(f"{end_time-start_time:.5f} sec")
|
||||||
print(results[0:10])
|
print(results[0:10])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Optimization 5 (0.235sec)
|
||||||
|
|
||||||
|
We don't really need float64. Let's us switch to float32:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from numba import njit
|
||||||
|
import numba
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
|
||||||
|
cache=True,
|
||||||
|
)
|
||||||
|
def get_spike(
|
||||||
|
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
|
||||||
|
) -> np.uint64:
|
||||||
|
|
||||||
|
summation: np.float32 = np.float32(0.0)
|
||||||
|
|
||||||
|
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||||||
|
|
||||||
|
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||||||
|
summation += h[i]
|
||||||
|
|
||||||
|
if random_number <= summation:
|
||||||
|
output = np.uint64(i)
|
||||||
|
return output
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64[::1](
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.float32[::1],
|
||||||
|
numba.types.float32[:, ::1],
|
||||||
|
),
|
||||||
|
cache=True,
|
||||||
|
)
|
||||||
|
def main(
|
||||||
|
number_of_iterations: np.uint64,
|
||||||
|
number_of_neurons: np.uint64,
|
||||||
|
random_number_spikes: np.ndarray,
|
||||||
|
random_number_h: np.ndarray,
|
||||||
|
) -> np.ndarray:
|
||||||
|
|
||||||
|
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||||||
|
|
||||||
|
for i in range(0, number_of_iterations):
|
||||||
|
h = random_number_h[i, :]
|
||||||
|
h /= h.sum()
|
||||||
|
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
number_of_iterations: np.uint64 = np.uint64(10000)
|
||||||
|
number_of_neurons: np.uint64 = np.uint64(10000)
|
||||||
|
myrng = np.random.default_rng()
|
||||||
|
|
||||||
|
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
|
||||||
|
random_number_h = myrng.random(
|
||||||
|
(number_of_iterations, number_of_neurons), dtype=np.float32
|
||||||
|
)
|
||||||
|
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
results = main(
|
||||||
|
number_of_iterations=number_of_iterations,
|
||||||
|
number_of_neurons=number_of_neurons,
|
||||||
|
random_number_spikes=random_number_spikes,
|
||||||
|
random_number_h=random_number_h,
|
||||||
|
)
|
||||||
|
end_time = time.perf_counter()
|
||||||
|
|
||||||
|
check_for_errors = np.sum([results >= number_of_neurons])
|
||||||
|
if check_for_errors > 0:
|
||||||
|
print("Something went really wrong! Panic!")
|
||||||
|
print(f"{end_time-start_time:.5f} sec")
|
||||||
|
print(results[0:10])
|
||||||
|
```
|
||||||
|
|
||||||
|
### Optimization 6 (0.144sec)
|
||||||
|
|
||||||
|
Let us activate [fastmath](https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#jit-decorator-fastmath)
|
||||||
|
|
||||||
|
```python
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
)
|
||||||
|
[...]
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64[::1](
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.float32[::1],
|
||||||
|
numba.types.float32[:, ::1],
|
||||||
|
),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from numba import njit
|
||||||
|
import numba
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
)
|
||||||
|
def get_spike(
|
||||||
|
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
|
||||||
|
) -> np.uint64:
|
||||||
|
summation: np.float32 = np.float32(0.0)
|
||||||
|
|
||||||
|
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||||||
|
|
||||||
|
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||||||
|
summation += h[i]
|
||||||
|
|
||||||
|
if random_number <= summation:
|
||||||
|
output = np.uint64(i)
|
||||||
|
return output
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64[::1](
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.float32[::1],
|
||||||
|
numba.types.float32[:, ::1],
|
||||||
|
),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
)
|
||||||
|
def main(
|
||||||
|
number_of_iterations: np.uint64,
|
||||||
|
number_of_neurons: np.uint64,
|
||||||
|
random_number_spikes: np.ndarray,
|
||||||
|
random_number_h: np.ndarray,
|
||||||
|
) -> np.ndarray:
|
||||||
|
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||||||
|
|
||||||
|
for i in range(0, number_of_iterations):
|
||||||
|
h = random_number_h[i, :]
|
||||||
|
h /= h.sum()
|
||||||
|
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
number_of_iterations: np.uint64 = np.uint64(10000)
|
||||||
|
number_of_neurons: np.uint64 = np.uint64(10000)
|
||||||
|
myrng = np.random.default_rng()
|
||||||
|
|
||||||
|
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
|
||||||
|
random_number_h = myrng.random(
|
||||||
|
(number_of_iterations, number_of_neurons), dtype=np.float32
|
||||||
|
)
|
||||||
|
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
results = main(
|
||||||
|
number_of_iterations=number_of_iterations,
|
||||||
|
number_of_neurons=number_of_neurons,
|
||||||
|
random_number_spikes=random_number_spikes,
|
||||||
|
random_number_h=random_number_h,
|
||||||
|
)
|
||||||
|
end_time = time.perf_counter()
|
||||||
|
|
||||||
|
check_for_errors = np.sum([results >= number_of_neurons])
|
||||||
|
if check_for_errors > 0:
|
||||||
|
print("Something went really wrong! Panic!")
|
||||||
|
print(f"{end_time-start_time:.5f} sec")
|
||||||
|
print(results[0:10])
|
||||||
|
```
|
||||||
|
|
||||||
|
### Optimization 7 (0.022sec)
|
||||||
|
|
||||||
|
We can run the function main in [parallel](https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#jit-decorator-parallel). This can be activated by:
|
||||||
|
|
||||||
|
```python
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64[::1](
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.float32[::1],
|
||||||
|
numba.types.float32[:, ::1],
|
||||||
|
),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
parallel=True,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
and then we need to replace **range** by **[prange](https://numba.pydata.org/numba-doc/latest/user/parallel.html#numba-parallel)**.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from numba import njit, prange
|
||||||
|
import numba
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
)
|
||||||
|
def get_spike(
|
||||||
|
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
|
||||||
|
) -> np.uint64:
|
||||||
|
summation: np.float32 = np.float32(0.0)
|
||||||
|
|
||||||
|
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||||||
|
|
||||||
|
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||||||
|
summation += h[i]
|
||||||
|
|
||||||
|
if random_number <= summation:
|
||||||
|
output = np.uint64(i)
|
||||||
|
return output
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@njit(
|
||||||
|
numba.types.uint64[::1](
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.uint64,
|
||||||
|
numba.types.float32[::1],
|
||||||
|
numba.types.float32[:, ::1],
|
||||||
|
),
|
||||||
|
cache=True,
|
||||||
|
fastmath=True,
|
||||||
|
parallel=True,
|
||||||
|
)
|
||||||
|
def main(
|
||||||
|
number_of_iterations: np.uint64,
|
||||||
|
number_of_neurons: np.uint64,
|
||||||
|
random_number_spikes: np.ndarray,
|
||||||
|
random_number_h: np.ndarray,
|
||||||
|
) -> np.ndarray:
|
||||||
|
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||||||
|
|
||||||
|
for i in prange(0, number_of_iterations):
|
||||||
|
h = random_number_h[i, :]
|
||||||
|
h /= h.sum()
|
||||||
|
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
number_of_iterations: np.uint64 = np.uint64(10000)
|
||||||
|
number_of_neurons: np.uint64 = np.uint64(10000)
|
||||||
|
myrng = np.random.default_rng()
|
||||||
|
|
||||||
|
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
|
||||||
|
random_number_h = myrng.random(
|
||||||
|
(number_of_iterations, number_of_neurons), dtype=np.float32
|
||||||
|
)
|
||||||
|
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
results = main(
|
||||||
|
number_of_iterations=number_of_iterations,
|
||||||
|
number_of_neurons=number_of_neurons,
|
||||||
|
random_number_spikes=random_number_spikes,
|
||||||
|
random_number_h=random_number_h,
|
||||||
|
)
|
||||||
|
end_time = time.perf_counter()
|
||||||
|
|
||||||
|
check_for_errors = np.sum([results >= number_of_neurons])
|
||||||
|
if check_for_errors > 0:
|
||||||
|
print("Something went really wrong! Panic!")
|
||||||
|
print(f"{end_time-start_time:.5f} sec")
|
||||||
|
|
||||||
|
print(results[0:10])
|
||||||
|
```
|
||||||
|
|
||||||
|
## Failure is an option: Debugging
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue