Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-28 18:21:29 +01:00 committed by GitHub
parent 038a3a44a0
commit 6aa06dc955
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -69,7 +69,7 @@ Some example for array signatures are:
|numba.types.float32[::1,:]| 2d array of float32 with Fortran memory layout|
|numba.types.float32[::1,:,:]| 3d array of float32 with Fortran memory layout|
## An example (up to 437x faster)
## An example (up to 350x faster)
For measuring the time used by the program I ran everything twice and took the second time. I did this is because the just-in-time compilation takes a moment for the first call of a function.
@ -501,3 +501,299 @@ if __name__ == "__main__":
print(f"{end_time-start_time:.5f} sec")
print(results[0:10])
```
### Optimization 5 (0.235sec)
We don't really need float64. Let's us switch to float32:
```python
import time
import numpy as np
from numba import njit
import numba
@njit(
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
cache=True,
)
def get_spike(
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
) -> np.uint64:
summation: np.float32 = np.float32(0.0)
output: np.uint64 = np.uint64(number_of_neurons - 1)
for i in range(0, np.uint64(number_of_neurons - 1)):
summation += h[i]
if random_number <= summation:
output = np.uint64(i)
return output
return output
@njit(
numba.types.uint64[::1](
numba.types.uint64,
numba.types.uint64,
numba.types.float32[::1],
numba.types.float32[:, ::1],
),
cache=True,
)
def main(
number_of_iterations: np.uint64,
number_of_neurons: np.uint64,
random_number_spikes: np.ndarray,
random_number_h: np.ndarray,
) -> np.ndarray:
results = np.zeros((number_of_iterations), dtype=np.uint64)
for i in range(0, number_of_iterations):
h = random_number_h[i, :]
h /= h.sum()
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
return results
if __name__ == "__main__":
number_of_iterations: np.uint64 = np.uint64(10000)
number_of_neurons: np.uint64 = np.uint64(10000)
myrng = np.random.default_rng()
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
random_number_h = myrng.random(
(number_of_iterations, number_of_neurons), dtype=np.float32
)
start_time = time.perf_counter()
results = main(
number_of_iterations=number_of_iterations,
number_of_neurons=number_of_neurons,
random_number_spikes=random_number_spikes,
random_number_h=random_number_h,
)
end_time = time.perf_counter()
check_for_errors = np.sum([results >= number_of_neurons])
if check_for_errors > 0:
print("Something went really wrong! Panic!")
print(f"{end_time-start_time:.5f} sec")
print(results[0:10])
```
### Optimization 6 (0.144sec)
Let us activate [fastmath](https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#jit-decorator-fastmath)
```python
@njit(
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
cache=True,
fastmath=True,
)
[...]
@njit(
numba.types.uint64[::1](
numba.types.uint64,
numba.types.uint64,
numba.types.float32[::1],
numba.types.float32[:, ::1],
),
cache=True,
fastmath=True,
)
```
```python
import time
import numpy as np
from numba import njit
import numba
@njit(
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
cache=True,
fastmath=True,
)
def get_spike(
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
) -> np.uint64:
summation: np.float32 = np.float32(0.0)
output: np.uint64 = np.uint64(number_of_neurons - 1)
for i in range(0, np.uint64(number_of_neurons - 1)):
summation += h[i]
if random_number <= summation:
output = np.uint64(i)
return output
return output
@njit(
numba.types.uint64[::1](
numba.types.uint64,
numba.types.uint64,
numba.types.float32[::1],
numba.types.float32[:, ::1],
),
cache=True,
fastmath=True,
)
def main(
number_of_iterations: np.uint64,
number_of_neurons: np.uint64,
random_number_spikes: np.ndarray,
random_number_h: np.ndarray,
) -> np.ndarray:
results = np.zeros((number_of_iterations), dtype=np.uint64)
for i in range(0, number_of_iterations):
h = random_number_h[i, :]
h /= h.sum()
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
return results
if __name__ == "__main__":
number_of_iterations: np.uint64 = np.uint64(10000)
number_of_neurons: np.uint64 = np.uint64(10000)
myrng = np.random.default_rng()
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
random_number_h = myrng.random(
(number_of_iterations, number_of_neurons), dtype=np.float32
)
start_time = time.perf_counter()
results = main(
number_of_iterations=number_of_iterations,
number_of_neurons=number_of_neurons,
random_number_spikes=random_number_spikes,
random_number_h=random_number_h,
)
end_time = time.perf_counter()
check_for_errors = np.sum([results >= number_of_neurons])
if check_for_errors > 0:
print("Something went really wrong! Panic!")
print(f"{end_time-start_time:.5f} sec")
print(results[0:10])
```
### Optimization 7 (0.022sec)
We can run the function main in [parallel](https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#jit-decorator-parallel). This can be activated by:
```python
@njit(
numba.types.uint64[::1](
numba.types.uint64,
numba.types.uint64,
numba.types.float32[::1],
numba.types.float32[:, ::1],
),
cache=True,
fastmath=True,
parallel=True,
)
```
and then we need to replace **range** by **[prange](https://numba.pydata.org/numba-doc/latest/user/parallel.html#numba-parallel)**.
```python
import time
import numpy as np
from numba import njit, prange
import numba
@njit(
numba.types.uint64(numba.types.float32[:], numba.types.uint64, numba.types.float32),
cache=True,
fastmath=True,
)
def get_spike(
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float32
) -> np.uint64:
summation: np.float32 = np.float32(0.0)
output: np.uint64 = np.uint64(number_of_neurons - 1)
for i in range(0, np.uint64(number_of_neurons - 1)):
summation += h[i]
if random_number <= summation:
output = np.uint64(i)
return output
return output
@njit(
numba.types.uint64[::1](
numba.types.uint64,
numba.types.uint64,
numba.types.float32[::1],
numba.types.float32[:, ::1],
),
cache=True,
fastmath=True,
parallel=True,
)
def main(
number_of_iterations: np.uint64,
number_of_neurons: np.uint64,
random_number_spikes: np.ndarray,
random_number_h: np.ndarray,
) -> np.ndarray:
results = np.zeros((number_of_iterations), dtype=np.uint64)
for i in prange(0, number_of_iterations):
h = random_number_h[i, :]
h /= h.sum()
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
return results
if __name__ == "__main__":
number_of_iterations: np.uint64 = np.uint64(10000)
number_of_neurons: np.uint64 = np.uint64(10000)
myrng = np.random.default_rng()
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float32)
random_number_h = myrng.random(
(number_of_iterations, number_of_neurons), dtype=np.float32
)
start_time = time.perf_counter()
results = main(
number_of_iterations=number_of_iterations,
number_of_neurons=number_of_neurons,
random_number_spikes=random_number_spikes,
random_number_h=random_number_h,
)
end_time = time.perf_counter()
check_for_errors = np.sum([results >= number_of_neurons])
if check_for_errors > 0:
print("Something went really wrong! Panic!")
print(f"{end_time-start_time:.5f} sec")
print(results[0:10])
```
## Failure is an option: Debugging