Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
c9571a3a14
commit
749b9aa28e
1 changed files with 100 additions and 0 deletions
|
@ -11,6 +11,8 @@
|
|||
|
||||
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||
|
||||
## Test data
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
@ -36,7 +38,105 @@ data_r = data @ roation_matrix
|
|||
|
||||
plt.plot(data[:, 0], data[:, 1], "b.")
|
||||
plt.plot(data_r[:, 0], data_r[:, 1], "r.")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
![image0](image0.png)
|
||||
|
||||
## Train and use PCA [sklearn.decomposition.PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA)
|
||||
|
||||
```python
|
||||
class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)
|
||||
```
|
||||
|
||||
> Principal component analysis (PCA).
|
||||
>
|
||||
> Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
|
||||
>
|
||||
> It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract.
|
||||
>
|
||||
> It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.
|
||||
>
|
||||
> Notice that this class does not support sparse input. See TruncatedSVD for an alternative with sparse data.
|
||||
|
||||
Attributes
|
||||
|
||||
> **explained_variance_** : ndarray of shape (n_components,)
|
||||
> The amount of variance explained by each of the selected components. The variance estimation uses n_samples - 1 degrees of freedom.
|
||||
>
|
||||
> Equal to n_components largest eigenvalues of the covariance matrix of X.
|
||||
|
||||
> **singular_values_** : ndarray of shape (n_components,)
|
||||
> The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the n_components variables in the lower-dimensional space.
|
||||
|
||||
Methods:
|
||||
|
||||
```python
|
||||
fit(X, y=None)
|
||||
```
|
||||
|
||||
> **X** : array-like of shape (n_samples, n_features)
|
||||
>
|
||||
> Training data, where n_samples is the number of samples and n_features is the number of features.
|
||||
|
||||
```python
|
||||
transform(X)
|
||||
```
|
||||
|
||||
> Apply dimensionality reduction to X.
|
||||
>
|
||||
> X is projected on the first principal components previously extracted from a training set.
|
||||
|
||||
> **X** : array-like of shape (n_samples, n_features)
|
||||
>
|
||||
> New data, where n_samples is the number of samples and n_features is the number of features.
|
||||
|
||||
|
||||
We rotate the red cloud back. This creates the black cloud. This fits nicely with the original data (blue cloud).
|
||||
|
||||
**Be aware that the sign of an individual axis can switch!!!**
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.decomposition import PCA
|
||||
|
||||
rng = np.random.default_rng(1)
|
||||
|
||||
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
|
||||
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
|
||||
data_a = np.concatenate((a_x, a_y), axis=1)
|
||||
|
||||
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
|
||||
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
|
||||
data_b = np.concatenate((b_x, b_y), axis=1)
|
||||
|
||||
data = np.concatenate((data_a, data_b), axis=0)
|
||||
|
||||
angle = -0.3
|
||||
|
||||
roation_matrix = np.array(
|
||||
[[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]
|
||||
)
|
||||
data_r = data @ roation_matrix
|
||||
|
||||
|
||||
pca = PCA(n_components=2)
|
||||
|
||||
# Train
|
||||
pca.fit(data_r)
|
||||
|
||||
print(pca.explained_variance_ratio_) # -> [0.52996112 0.47003888]
|
||||
print(pca.singular_values_) # -> [287.55360494 270.80938189]
|
||||
|
||||
# Use
|
||||
transformed_data = pca.transform(data_r)
|
||||
|
||||
|
||||
plt.plot(data[:, 0], data[:, 1], "b.")
|
||||
plt.plot(data_r[:, 0], data_r[:, 1], "r.")
|
||||
plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
![image1](image1.png)
|
||||
|
|
Loading…
Reference in a new issue