Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-19 15:10:46 +01:00 committed by GitHub
parent c9571a3a14
commit 749b9aa28e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -11,6 +11,8 @@
Questions to [David Rotermund](mailto:davrot@uni-bremen.de) Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Test data
```python ```python
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -36,7 +38,105 @@ data_r = data @ roation_matrix
plt.plot(data[:, 0], data[:, 1], "b.") plt.plot(data[:, 0], data[:, 1], "b.")
plt.plot(data_r[:, 0], data_r[:, 1], "r.") plt.plot(data_r[:, 0], data_r[:, 1], "r.")
plt.show()
``` ```
![image0](image0.png) ![image0](image0.png)
## Train and use PCA [sklearn.decomposition.PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA)
```python
class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)
```
> Principal component analysis (PCA).
>
> Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
>
> It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract.
>
> It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.
>
> Notice that this class does not support sparse input. See TruncatedSVD for an alternative with sparse data.
Attributes
> **explained_variance_** : ndarray of shape (n_components,)
> The amount of variance explained by each of the selected components. The variance estimation uses n_samples - 1 degrees of freedom.
>
> Equal to n_components largest eigenvalues of the covariance matrix of X.
> **singular_values_** : ndarray of shape (n_components,)
> The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the n_components variables in the lower-dimensional space.
Methods:
```python
fit(X, y=None)
```
> **X** : array-like of shape (n_samples, n_features)
>
> Training data, where n_samples is the number of samples and n_features is the number of features.
```python
transform(X)
```
> Apply dimensionality reduction to X.
>
> X is projected on the first principal components previously extracted from a training set.
> **X** : array-like of shape (n_samples, n_features)
>
> New data, where n_samples is the number of samples and n_features is the number of features.
We rotate the red cloud back. This creates the black cloud. This fits nicely with the original data (blue cloud).
**Be aware that the sign of an individual axis can switch!!!**
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
rng = np.random.default_rng(1)
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
angle = -0.3
roation_matrix = np.array(
[[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]
)
data_r = data @ roation_matrix
pca = PCA(n_components=2)
# Train
pca.fit(data_r)
print(pca.explained_variance_ratio_) # -> [0.52996112 0.47003888]
print(pca.singular_values_) # -> [287.55360494 270.80938189]
# Use
transformed_data = pca.transform(data_r)
plt.plot(data[:, 0], data[:, 1], "b.")
plt.plot(data_r[:, 0], data_r[:, 1], "r.")
plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
plt.show()
```
![image1](image1.png)