From 7dd52e7e5935298bf0bdfc2ca27c9bf398453f8b Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Sat, 2 Dec 2023 20:50:16 +0100 Subject: [PATCH] Update README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- matlab/3/README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/matlab/3/README.md b/matlab/3/README.md index ac1056e..e6a3083 100644 --- a/matlab/3/README.md +++ b/matlab/3/README.md @@ -29,7 +29,7 @@ A major advantage of Matlab in comparison to a conventional programming language | | | | | ------------- |:-------------:|:-------------:| -| `a = [3;1];` | defines a column vector | $\vec{a} = \left(\begin{array}{c}3\\1\\\end{array}\right)$ | +| `a = [3;1];` | defines a column vector | $\vec{a} = \left(\begin{array}{c}3 & 1 \end{array}\right)$ | | `a(k)` | means the vector component | $a_k$ | | `b = [0,3,-4];` | defines a row vector | $\vec{b} = (0,3,-4)$ | @@ -43,29 +43,29 @@ $3x+y = 1 $ can be formulated elegantly: -$$ \left(\begin{array}{cc} 1 & 2 \\\\ 3 & 1 \\ \end{array}\right) \left(\begin{array}{c} x & y \\\\ \end{array}\right) = \left(\begin{array}{c} 3 & 1 \\\\ \end{array}\right) $$ +$$ \left(\begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array}\right) \left(\begin{array}{c} x & y \end{array}\right) = \left(\begin{array}{c} 3 & 1 \end{array}\right) $$ respectively -$D\,\vec{x} = \vec{b} $ +$$D\,\vec{x} = \vec{b} $$ with the $2\times 2$ matrix -$ D = \left(\begin{array}{cc}1 & 2\\3 & 1\\\end{array}\right) \begin{array}{c}\leftarrow\;\;\mbox{1. line}\\\leftarrow\;\;\mbox{2. line}\\\end{array}$ +$$ D = \left(\begin{array}{cc}1 & 2 \\ 3 & 1 \end{array}\right) \begin{array}{c}\leftarrow\;\;\mbox{1. line} \\ \leftarrow\;\;\mbox{2. line} \\ \end{array}$$ -$\nearrow$ $\nwarrow$ +$$\nearrow \nwarrow$$ 1. line 2. line and the column vectors -$ \vec{x} = \left(\begin{array}{c}x\\y\\\end{array}\right) \quad\mbox{and}\quad \vec{b} = \left(\begin{array}{c}3\\ 1\\\end{array}\right) $. +$$ \vec{x} = \left(\begin{array}{c}x & y \end{array}\right) \quad\mbox{and}\quad \vec{b} = \left(\begin{array}{c}3 & 1 \end{array}\right) $$ Here, $\vec{x}$ is the solution vector being sought. The formal solution of the equation $D\,\vec{x} = \vec{b}$ is given by -$\vec{x} = D^{-1}\, \vec{b} \, ,$ +&$\vec{x} = D^{-1}\, \vec{b} \, ,$& where $D^{-1}$ denotes the inverse of the matrix $D$.