Create README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
9922bc8f68
commit
7f55201d8b
1 changed files with 62 additions and 0 deletions
62
scikit-learn/svm/README.md
Normal file
62
scikit-learn/svm/README.md
Normal file
|
@ -0,0 +1,62 @@
|
||||||
|
# Supprt Vector Machine
|
||||||
|
{:.no_toc}
|
||||||
|
|
||||||
|
<nav markdown="1" class="toc-class">
|
||||||
|
* TOC
|
||||||
|
{:toc}
|
||||||
|
</nav>
|
||||||
|
|
||||||
|
## Top
|
||||||
|
|
||||||
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||||
|
|
||||||
|
|
||||||
|
## [sklearn.svm.SVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)
|
||||||
|
|
||||||
|
```python
|
||||||
|
sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
> **kernel** : {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable, default=’rbf’
|
||||||
|
>
|
||||||
|
> Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).
|
||||||
|
|
||||||
|
### [fit](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.fit)
|
||||||
|
|
||||||
|
```python
|
||||||
|
fit(X, y, sample_weight=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
> Fit the SVM model according to the given training data.
|
||||||
|
>
|
||||||
|
> **X** : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)
|
||||||
|
>
|
||||||
|
> Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples).
|
||||||
|
>
|
||||||
|
> **y** : array-like of shape (n_samples,)
|
||||||
|
>
|
||||||
|
> Target values (class labels in classification, real numbers in regression).
|
||||||
|
|
||||||
|
### [predict](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.predict)
|
||||||
|
|
||||||
|
```python
|
||||||
|
predict(X)
|
||||||
|
```
|
||||||
|
> For an one-class model, +1 or -1 is returned.
|
||||||
|
>
|
||||||
|
> Parameters:
|
||||||
|
>
|
||||||
|
> **X** : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test, n_samples_train)
|
||||||
|
>
|
||||||
|
> Returns:
|
||||||
|
>
|
||||||
|
> **y_pred** : ndarray of shape (n_samples,)
|
||||||
|
>
|
||||||
|
> Class labels for samples in X.
|
||||||
|
|
||||||
|
```python
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
```shell
|
||||||
|
```
|
Loading…
Reference in a new issue