mirror of
https://github.com/davrot/pytutorial.git
synced 2025-04-16 12:16:42 +02:00
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
d5439698d5
commit
808495a61a
1 changed files with 101 additions and 2 deletions
|
@ -28,9 +28,9 @@ numpy.tile(A, reps)
|
|||
>
|
||||
> Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting operations and functions.
|
||||
|
||||
**Very very important!!! First use numpy.newaxis to create the required additional axis and then use tile.**
|
||||
**You might want to first use numpy.newaxis to create the required additional axis and then use tile.**
|
||||
|
||||
Adding a new dimension:
|
||||
Adding a new dimension makes a copy:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
@ -140,3 +140,102 @@ Output:
|
|||
[1 2 3 4]
|
||||
[1 2 3 4]]]
|
||||
```
|
||||
|
||||
### Don’t confuse tile() with repeat()!
|
||||
|
||||
```python
|
||||
numpy.repeat(a, repeats, axis=None)[source]
|
||||
```
|
||||
|
||||
> Repeat each element of an array after themselves
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
a = np.arange(1, 5)
|
||||
print(a) # -> [1 2 3 4]
|
||||
print(a.shape) # -> (4,)
|
||||
|
||||
b = np.repeat(a, (4))
|
||||
print(b) # -> [1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4]
|
||||
print(b.shape) # -> (16,)
|
||||
```
|
||||
|
||||
## [numpy.pad](https://numpy.org/doc/stable/reference/generated/numpy.pad.html)
|
||||
|
||||
```python
|
||||
numpy.pad(array, pad_width, mode='constant', **kwargs)
|
||||
```
|
||||
|
||||
> Pad an array.
|
||||
|
||||
> **pad_width** : {sequence, array_like, int}
|
||||
>
|
||||
> Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. (before, after) or ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes.
|
||||
|
||||
> **constant_values** : sequence or scalar, optional
|
||||
>
|
||||
> Used in ‘constant’. The values to set the padded values for each axis.
|
||||
>
|
||||
> ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis.
|
||||
>
|
||||
> (before, after) or ((before, after),) yields same before and after constants for each axis.
|
||||
>
|
||||
> (constant,) or constant is a shortcut for before = after = constant for all axes.
|
||||
>
|
||||
> Default is 0.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
a = np.arange(1, 5)
|
||||
print(a) # -> [1 2 3 4]
|
||||
print(a.shape) # -> (4,)
|
||||
|
||||
|
||||
print(np.pad(a, 2)) # -> [0 0 1 2 3 4 0 0]
|
||||
print(np.pad(a, [2, 3])) # -> [0 0 1 2 3 4 0 0 0]
|
||||
print(np.pad(a, [2, 3], constant_values=-1)) # -> [-1 -1 1 2 3 4 -1 -1 -1]
|
||||
```
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
a = np.arange(1, 5).reshape((1, 4))
|
||||
print(a) # -> [[1 2 3 4]]
|
||||
print(a.shape) # -> (1, 4)
|
||||
|
||||
|
||||
print(np.pad(a, [[2, 3], [1, 1]]))
|
||||
```
|
||||
|
||||
Output:
|
||||
```python
|
||||
[[0 0 0 0 0 0]
|
||||
[0 0 0 0 0 0]
|
||||
[0 1 2 3 4 0]
|
||||
[0 0 0 0 0 0]
|
||||
[0 0 0 0 0 0]
|
||||
[0 0 0 0 0 0]]
|
||||
```
|
||||
|
||||
### Pad can do more complex padding patterns than just pad with constant values!
|
||||
|
||||
> **mode** : str or function, optional
|
||||
>
|
||||
> One of the following string values or a user supplied function.
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|‘constant’ (default)|Pads with a constant value.|
|
||||
|‘edge’|Pads with the edge values of array.|
|
||||
|‘linear_ramp’|Pads with the linear ramp between end_value and the array edge value.|
|
||||
|‘maximum’|Pads with the maximum value of all or part of the vector along each axis.|
|
||||
|‘mean’|Pads with the mean value of all or part of the vector along each axis.|
|
||||
|‘median’|Pads with the median value of all or part of the vector along each axis.|
|
||||
|‘minimum’|Pads with the minimum value of all or part of the vector along each axis.|
|
||||
|‘reflect’|Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis.|
|
||||
|‘symmetric’|Pads with the reflection of the vector mirrored along the edge of the array.|
|
||||
|‘wrap’|Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning.|
|
||||
|‘empty’|Pads with undefined values.|
|
||||
|<function>|Padding function, see Notes.|
|
||||
|
|
Loading…
Add table
Reference in a new issue