Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2024-01-05 15:38:20 +01:00 committed by GitHub
parent ae83e1287a
commit 832128acc9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -21,7 +21,7 @@ reset_parameters(): I copied it from the original code.
forward(): We get an input tensor and need to produce an output tensor. Please remember that dimension 0 contains the batch. Here we just multiply the input with the weights and add the bias to it (if available).
extra_repr(): Plots the information about the layer in a nice fashion.
extra_repr(): Prints the information about the layer in a nice fashion.
```python
@ -81,4 +81,84 @@ class MyOwnLayer(torch.nn.Module):
return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}"
```
I just add it to the networs as any other layer:
```python
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
MyOwnLayer(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_output,
bias=True,
),
torch.nn.Softmax(dim=1),
).to(device=device_gpu)
```
We can print information as usual:
```python
print(network[-4])
```
Output:
```python
MyOwnLayer(in_features=576, out_features=1024, bias=True)
```
We can check the stored parameters:
```python
for parameter in network[-4].parameters():
print(type(parameter), parameter.shape)
print()
for name, parameter in network[-4].named_parameters():
print(name, type(parameter), parameter.shape)
```
Output:
```python
<class 'torch.nn.parameter.Parameter'> torch.Size([1024, 576])
<class 'torch.nn.parameter.Parameter'> torch.Size([1024])
weight <class 'torch.nn.parameter.Parameter'> torch.Size([1024, 576])
bias <class 'torch.nn.parameter.Parameter'> torch.Size([1024])
```
And train the network as usual:
![Figure_1.png](Figure_1.png)