diff --git a/numpy/power_mean/README.md b/numpy/power_mean/README.md index ce1195b..57379b2 100644 --- a/numpy/power_mean/README.md +++ b/numpy/power_mean/README.md @@ -10,12 +10,46 @@ Questions to [David Rotermund](mailto:davrot@uni-bremen.de) +## The order is important + +You are not allowed to average over the trials before calculating the power. This is the same for calculating the fft power as well as the wavelet power. + +```python +import numpy as np +import matplotlib.pyplot as plt + +t: np.ndarray = np.linspace(0, 1.0, 10000) +f: float = 10 + +sinus_a = np.sin(f * t * 2.0 * np.pi) +sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi) + +plt.plot(t, sinus_a, label="a") +plt.plot(t, sinus_b, label="b") +plt.plot(t, (sinus_a + sinus_b) / 2.0, "k--", label="(a+b)/2") +plt.legend() +plt.xlabel("t [s]") +plt.show() +``` + +![image0.png] ```python +import numpy as np +import matplotlib.pyplot as plt + +t: np.ndarray = np.linspace(0, 1.0, 10000) +f: float = 10 +n: int = 1000 + +rng = np.random.default_rng(1) +sinus = np.sin(f * t[:, np.newaxis] * 2.0 * np.pi + 2.0 * np.pi * rng.random((1, n))) +print(sinus.shape) + +plt.plot(t, sinus) +plt.plot(t, sinus.mean(axis=-1), "k--") +plt.show() ``` - -```shell -``` - +![image1.png]