Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-18 12:36:44 +01:00 committed by GitHub
parent bab57be532
commit 8776f03fbb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -196,8 +196,30 @@ print(data_1.iloc[0])
print(data_1["Food"])
```
### Converting a dictionary
```python
import pandas as pd
data_1 = pd.Series({"A": 34, "B": 54, "C": "Blub"})
print(data_1)
```
Output:
```python
A 34
B 54
C Blub
dtype: object
```
### Operations on Series
#### Example: Math on one series
```python
import pandas as pd
import numpy as np
@ -239,6 +261,130 @@ dtype: float64
1.9543834923707668
```
#### Example: Math with two series
```python
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)
print(data_1)
print()
print(data_2)
print()
print((data_1 + data_2))
print()
print((data_1 + data_2) * 3 + 10)
```
Output:
```python
A 0.702998
B 0.032210
C 0.534611
D 0.839864
E 0.118698
dtype: float64
D 0.321691
E 0.024475
F 0.168798
G 0.232925
H 0.782430
dtype: float64
A NaN
B NaN
C NaN
D 1.161555
E 0.143173
F NaN
G NaN
H NaN
dtype: float64
A NaN
B NaN
C NaN
D 13.484666
E 10.429519
F NaN
G NaN
H NaN
dtype: float64
```
#### Example: Applying numpy functions ([pandas.Series.apply](https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html))
```python
Series.apply(func, convert_dtype=_NoDefault.no_default, args=(), *, by_row='compat', **kwargs)
```
> Invoke function on values of Series.
>
> Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.
```python
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
print(data_1)
print()
print(data_1[["A", "D"]])
print()
data_2 = data_1.apply(np.log)
print(data_2)
print()
data_3 = data_1.apply(lambda x: x if x > 0.5 else 0)
print(data_3)
print()
```
Output:
```python
A 0.803968
B 0.234188
C 0.511411
D 0.858326
E 0.374570
dtype: float64
A 0.803968
D 0.858326
dtype: float64
A -0.218195
B -1.451633
C -0.670581
D -0.152771
E -0.981978
dtype: float64
A 0.803968
B 0.000000
C 0.511411
D 0.858326
E 0.000000
dtype: float64
```
## [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
```python