Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2024-01-03 17:09:08 +01:00 committed by GitHub
parent 1fe8847737
commit 8b5f36e9cb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -129,4 +129,218 @@ assert((input_dim_2 > 0));
assert((input_dim_3 > 0)); assert((input_dim_3 > 0));
``` ```
## GPU
### .env File
```Makefile
PYBIN=~/P3.11/bin/
CC=/usr/lib64/ccache/clang++
NVCC=/usr/local/cuda-12/bin/nvcc -allow-unsupported-compiler
PARAMETERS_O_CPU = -O3 -std=c++14 -fPIC -Wall -fopenmp=libomp
PARAMETERS_Linker_CPU = -shared -lm -lomp -lstdc++ -Wall
PARAMETERS_O_GPU= -O3 -std=c++14 -ccbin=$(CC) \
-Xcompiler "-fPIC -Wall -fopenmp=libomp"
PARAMETERS_Linker_GPU=-Xcompiler "-shared -lm -lomp -lstdc++ -Wall"
O_DIRS = o/
```
### Makefile
```Makefile
include .env
export
name = HDynamicCNN
type = GPU
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
PARAMETERS_O = $(PARAMETERS_O_GPU) $(PYBIND11INCLUDE)
PARAMETERS_Linker = $(PARAMETERS_Linker_GPU)
so_file = Py$(name)$(type)$(PYPOSTFIX)
pyi_file = Py$(name)$(type).pyi
all: $(so_file)
$(O_DIRS)$(name)$(type).o: $(name)$(type).h $(name)$(type).cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c $(name)$(type).cu -o $(O_DIRS)$(name)$(type).o
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
$(so_file): $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
$(NVCC) $(PARAMETERS_Linker) -o $(so_file) $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
#######################
clean:
rm -rf $(O_DIRS)
rm -f $(so_file)
rm -f $(pyi_file)
```
### .cu File
Some note:
#### CuBlas
You want to use [cublas](https://docs.nvidia.com/cuda/cublas/index.html) if possible.
### Create and free memory
```cpp
cudaError_t status;
float* w_memory = nullptr;
status = cudaMalloc((void**)&w_memory, number_of_elements * sizeof(float));
assert((status == cudaSuccess));
```
```cpp
status = cudaFree(w_memory);
assert((status == cudaSuccess));
```
### Own kernels
**Writing a working Cuda Kernel is easy. However, writing a fast one is really really hard. Beside a good Cuda code, you need a good setting for the parallelization parameters. And those depend on the problem AND the GPU you are using.**
If you really want to make your own GPU kernel, don't forget:
```cpp
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
```
### Example Kernel:
```cpp
kernel_pxy_reciprocal<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][0],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][1],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][3],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][4],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][5])>>>(
epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][6]);
```
```cpp
occupancy_kernel_pxy_reciprocal(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL], display_debug);
```
#### kernel_pxy_reciprocal.h
```cpp
#ifndef KERNEL_PXY_RECIPROCAL
#define KERNEL_PXY_RECIPROCAL
#include <vector>
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx);
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_RECIPROCAL */
```
#### kernel_pxy_reciprocal.cu
```cpp
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_reciprocal.h"
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] = 1.0 / pxy_memory[idx];
}
};
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_reciprocal, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_reciprocal:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};
```
#### kernel_helper_functions.h
```cpp
#ifndef KERNEL_HELPER_FUNCTIONS
#define KERNEL_HELPER_FUNCTIONS
#include <vector>
void kernel_debug_plot(std::vector<size_t> output, bool display_debug);
#endif /* KERNEL_HELPER_FUNCTIONS */
```
#### kernel_helper_functions.cu
```cpp
#include <iostream>
#include "kernel_helper_functions.h"
void kernel_debug_plot(std::vector<size_t> output, bool display_debug) {
if (display_debug == true) {
std::cout << "grid x: " << output[0] << std::endl;
std::cout << "grid y: " << output[1] << std::endl;
std::cout << "grid z: " << output[2] << std::endl;
std::cout << "thread block x: " << output[3] << std::endl;
std::cout << "thread block y: " << output[4] << std::endl;
std::cout << "thread block z: " << output[5] << std::endl;
std::cout << "max_idx: " << output[6] << std::endl << std::endl;
}
return;
};
```