Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-11-16 18:36:42 +01:00 committed by GitHub
parent 4efda9ed5a
commit 8cf09dc4ff
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -39,3 +39,90 @@ plt.ylabel("Waveform shifted")
plt.title("unfiltered data")
plt.show()
```
![figure 1](figure_1.png)
## Low pass
```python
from scipy import signal
lowpass_frequency = 2.0 # Hz
# Nint : The order of the filter.
# Wn : The critical frequency or frequencies. For lowpass and highpass filters, Wn is a scalar; for bandpass and bandstop filters, Wn is a length-2 sequence.
# For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) that of the passband (the “-3 dB point”).
# For digital filters, if fs is not specified, Wn units are normalized from 0 to 1, where 1 is the Nyquist frequency (Wn is thus in half cycles / sample and defined as 2*critical frequencies / fs). If fs is specified, Wn is in the same units as fs.
# For analog filters, Wn is an angular frequency (e.g. rad/s).
# btype{lowpass, highpass, bandpass, bandstop}, optional
# fs float, optional : The sampling frequency of the digital system.
b_low, a_low = signal.butter(
N=4, Wn=lowpass_frequency, btype="lowpass", fs=samples_per_second
)
sin_low_lp = signal.filtfilt(b_low, a_low, sin_low)
sin_mid_lp = signal.filtfilt(b_low, a_low, sin_mid)
sin_high_lp = signal.filtfilt(b_low, a_low, sin_high)
plt.figure(2)
plt.plot(t, sin_low_lp)
plt.plot(t, sin_mid_lp + 3)
plt.plot(t, sin_high_lp + 6)
plt.xlabel("Time [s]")
plt.ylabel("Waveform shifted")
plt.title(f"{lowpass_frequency} Hz low-pass filtered data")
plt.show()
```
![figure 2](figure_2.png)
## High pass
```python
from scipy import signal
highpass_frequency = 20.0 # Hz
b_high, a_high = signal.butter(
N=4, Wn=highpass_frequency, btype="highpass", fs=samples_per_second
)
sin_low_hp = signal.filtfilt(b_high, a_high, sin_low)
sin_mid_hp = signal.filtfilt(b_high, a_high, sin_mid)
sin_high_hp = signal.filtfilt(b_high, a_high, sin_high)
plt.figure(3)
plt.plot(t, sin_low_hp)
plt.plot(t, sin_mid_hp + 3)
plt.plot(t, sin_high_hp + 6)
plt.xlabel("Time [s]")
plt.ylabel("Waveform shifted")
plt.title(f"{highpass_frequency} Hz high-pass filtered data")
plt.show()
```
![figure 3](figure_3.png)
## Band pass
```python
from scipy import signal
lowpass_frequency = 2.0 # Hz
highpass_frequency = 20.0 # Hz
b_band, a_band = signal.butter(
N=4,
Wn=(lowpass_frequency, highpass_frequency),
btype="bandpass",
fs=samples_per_second,
)
sin_low_bp = signal.filtfilt(b_band, a_band, sin_low)
sin_mid_bp = signal.filtfilt(b_band, a_band, sin_mid)
sin_high_bp = signal.filtfilt(b_band, a_band, sin_high)
plt.figure(4)
plt.plot(t, sin_low_bp)
plt.plot(t, sin_mid_bp + 3)
plt.plot(t, sin_high_bp + 6)
plt.xlabel("Time [s]")
plt.ylabel("Waveform shifted")
plt.title(f"({lowpass_frequency} Hz, {highpass_frequency} Hz) band-pass filtered data")
plt.show()
```
![figure 4](figure_4.png)