From 8eeebbbe4d03f6c957cf1c787748b5019174671b Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Thu, 23 Nov 2023 18:27:10 +0100 Subject: [PATCH] Update README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- numpy_random/README.md | 85 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) diff --git a/numpy_random/README.md b/numpy_random/README.md index ca789b8..384d163 100644 --- a/numpy_random/README.md +++ b/numpy_random/README.md @@ -111,3 +111,88 @@ Output: [[2 3 3 2 1 3 1 1 2 2] [3 3 2 3 3 2 3 3 1 3]] ``` + +### choice +```python +import numpy as np + +rng = np.random.default_rng() +p = np.array([1, 2, 3]).astype(np.float64) +p /= p.sum() +print(f"p: {p}") +random_values = rng.choice(a=p.shape[0], p=p, size=(2, 10)) +print(random_values) +``` +Output: +``` +p: [0.16666667 0.33333333 0.5 ] +[[0 2 2 1 2 1 2 1 0 1] + [2 0 1 2 2 1 0 2 1 2]] +``` + +## [Permutations](https://numpy.org/doc/stable/reference/random/generator.html#permutations) +| | | +| ------------- |:-------------:| +|[shuffle(x[, axis])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.shuffle.html#numpy.random.Generator.shuffle)|Modify an array or sequence in-place by shuffling its contents.| +|[permutation(x[, axis])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.permutation.html#numpy.random.Generator.permutation)|Randomly permute a sequence, or return a permuted range.| +|[permuted(x[, axis, out])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.permuted.html#numpy.random.Generator.permuted)|Randomly permute x along axis axis.| + +|method |copy/in-place | [ axis handling](https://numpy.org/doc/stable/reference/random/generator.html#handling-the-axis-parameter) | +| ------------- |:-------------:|:-------------:| +|shuffle|in-place|as if 1d| +|permutation|copy|as if 1d| +|permuted|either (use ‘out’ for in-place)|axis independent| + +### shuffle +```python +import numpy as np + +rng = np.random.default_rng() +idx_randomized = np.arange(0, 10) +rng.shuffle(idx_randomized) + +print(idx_randomized) +``` +Output: +``` +[0 2 8 9 5 4 3 6 1 7] +``` + +### permutation +```python +import numpy as np + +rng = np.random.default_rng() +idx_randomized = rng.permutation(10) + +print(idx_randomized) +``` +Output: +``` +[9 4 7 2 6 3 1 8 5 0] +``` + +### permuted +```python +import numpy as np + +rng = np.random.default_rng() +idx = np.arange(0, 10) + +idx_randomized = rng.permuted(idx) + +print(idx_randomized) +``` +Output: +``` +[4 1 2 8 9 6 0 5 7 3] +``` +## All Distributions + +You need more distributions? [Go here.](https://numpy.org/doc/stable/reference/random/generator.html#distributions) + +## Multithreaded Generation + +The four core distribution (random, standard_normal, standard_exponential, and standard_gamma) can be used with multi-threading. Please look [here for an example](https://numpy.org/doc/stable/reference/random/multithreading.html#multithreaded-generation). + +