Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-16 15:13:25 +01:00 committed by GitHub
parent bc4b525e15
commit 9214c227a3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -147,80 +147,38 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d
|||
|---|---|
discriminant_analysis.LinearDiscriminantAnalysis([...])
Linear Discriminant Analysis.
discriminant_analysis.QuadraticDiscriminantAnalysis(*)
Quadratic Discriminant Analysis.
|discriminant_analysis.LinearDiscriminantAnalysis([...])|Linear Discriminant Analysis.|
|discriminant_analysis.QuadraticDiscriminantAnalysis(*)|Quadratic Discriminant Analysis.|
## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy)
|||
|---|---|
dummy.DummyClassifier(*[, strategy, ...])
DummyClassifier makes predictions that ignore the input features.
dummy.DummyRegressor(*[, strategy, ...])
Regressor that makes predictions using simple rules.
|dummy.DummyClassifier(*[, strategy, ...])|DummyClassifier makes predictions that ignore the input features.|
|dummy.DummyRegressor(*[, strategy, ...])|Regressor that makes predictions using simple rules.|
## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
|||
|---|---|
ensemble.AdaBoostClassifier([estimator, ...])
An AdaBoost classifier.
ensemble.AdaBoostRegressor([estimator, ...])
An AdaBoost regressor.
ensemble.BaggingClassifier([estimator, ...])
A Bagging classifier.
ensemble.BaggingRegressor([estimator, ...])
A Bagging regressor.
ensemble.ExtraTreesClassifier([...])
An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...])
An extra-trees regressor.
ensemble.GradientBoostingClassifier(*[, ...])
Gradient Boosting for classification.
ensemble.GradientBoostingRegressor(*[, ...])
Gradient Boosting for regression.
ensemble.IsolationForest(*[, n_estimators, ...])
Isolation Forest Algorithm.
ensemble.RandomForestClassifier([...])
A random forest classifier.
ensemble.RandomForestRegressor([...])
A random forest regressor.
ensemble.RandomTreesEmbedding([...])
An ensemble of totally random trees.
ensemble.StackingClassifier(estimators[, ...])
Stack of estimators with a final classifier.
ensemble.StackingRegressor(estimators[, ...])
Stack of estimators with a final regressor.
ensemble.VotingClassifier(estimators, *[, ...])
Soft Voting/Majority Rule classifier for unfitted estimators.
ensemble.VotingRegressor(estimators, *[, ...])
Prediction voting regressor for unfitted estimators.
ensemble.HistGradientBoostingRegressor([...])
Histogram-based Gradient Boosting Regression Tree.
ensemble.HistGradientBoostingClassifier([...])
Histogram-based Gradient Boosting Classification Tree.
|ensemble.AdaBoostClassifier([estimator, ...])|An AdaBoost classifier.|
|ensemble.AdaBoostRegressor([estimator, ...])|An AdaBoost regressor.|
|ensemble.BaggingClassifier([estimator, ...])|A Bagging classifier.|
|ensemble.BaggingRegressor([estimator, ...])|A Bagging regressor.|
|ensemble.ExtraTreesClassifier([...])|An extra-trees classifier.|
|ensemble.ExtraTreesRegressor([n_estimators, ...])|An extra-trees regressor.|
|ensemble.GradientBoostingClassifier(*[, ...])|Gradient Boosting for classification.|
|ensemble.GradientBoostingRegressor(*[, ...])|Gradient Boosting for regression.|
|ensemble.IsolationForest(*[, n_estimators, ...])|Isolation Forest Algorithm.|
|ensemble.RandomForestClassifier([...])|A random forest classifier.|
|ensemble.RandomForestRegressor([...])|A random forest regressor.|
|ensemble.RandomTreesEmbedding([...])|An ensemble of totally random trees.|
|ensemble.StackingClassifier(estimators[, ...])|Stack of estimators with a final classifier.|
|ensemble.StackingRegressor(estimators[, ...])|Stack of estimators with a final regressor.|
|ensemble.VotingClassifier(estimators, *[, ...])|Soft Voting/Majority Rule classifier for unfitted estimators.|
|ensemble.VotingRegressor(estimators, *[, ...])|Prediction voting regressor for unfitted estimators.|
|ensemble.HistGradientBoostingRegressor([...])|Histogram-based Gradient Boosting Regression Tree.|
|ensemble.HistGradientBoostingClassifier([...])|Histogram-based Gradient Boosting Classification Tree.|
## [sklearn.exceptions: Exceptions and warnings](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions)
@ -234,158 +192,75 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.e
|||
|---|---|
feature_extraction.DictVectorizer(*[, ...])
Transforms lists of feature-value mappings to vectors.
feature_extraction.FeatureHasher([...])
Implements feature hashing, aka the hashing trick.
|feature_extraction.DictVectorizer(*[, ...])|Transforms lists of feature-value mappings to vectors.|
|feature_extraction.FeatureHasher([...])|Implements feature hashing, aka the hashing trick.|
### From images
|||
|---|---|
feature_extraction.image.extract_patches_2d(...)
Reshape a 2D image into a collection of patches.
feature_extraction.image.grid_to_graph(n_x, n_y)
Graph of the pixel-to-pixel connections.
feature_extraction.image.img_to_graph(img, *)
Graph of the pixel-to-pixel gradient connections.
feature_extraction.image.reconstruct_from_patches_2d(...)
Reconstruct the image from all of its patches.
feature_extraction.image.PatchExtractor(*[, ...])
Extracts patches from a collection of images.
|feature_extraction.image.extract_patches_2d(...)|Reshape a 2D image into a collection of patches.|
|feature_extraction.image.grid_to_graph(n_x, n_y)|Graph of the pixel-to-pixel connections.|
|feature_extraction.image.img_to_graph(img, *)|Graph of the pixel-to-pixel gradient connections.|
|feature_extraction.image.reconstruct_from_patches_2d(...)|Reconstruct the image from all of its patches.|
|feature_extraction.image.PatchExtractor(*[, ...])|Extracts patches from a collection of images.|
### From text
|||
|---|---|
feature_extraction.text.CountVectorizer(*[, ...])
Convert a collection of text documents to a matrix of token counts.
feature_extraction.text.HashingVectorizer(*)
Convert a collection of text documents to a matrix of token occurrences.
feature_extraction.text.TfidfTransformer(*)
Transform a count matrix to a normalized tf or tf-idf representation.
feature_extraction.text.TfidfVectorizer(*[, ...])
Convert a collection of raw documents to a matrix of TF-IDF features.
|feature_extraction.text.CountVectorizer(*[, ...])|Convert a collection of text documents to a matrix of token counts.|
|feature_extraction.text.HashingVectorizer(*)|Convert a collection of text documents to a matrix of token occurrences.|
|feature_extraction.text.TfidfTransformer(*)|Transform a count matrix to a normalized tf or tf-idf representation.|
|feature_extraction.text.TfidfVectorizer(*[, ...])|Convert a collection of raw documents to a matrix of TF-IDF features.|
## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection)
|||
|---|---|
feature_selection.GenericUnivariateSelect([...])
Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([...])
Select features according to a percentile of the highest scores.
feature_selection.SelectKBest([score_func, k])
Select features according to the k highest scores.
feature_selection.SelectFpr([score_func, alpha])
Filter: Select the pvalues below alpha based on a FPR test.
feature_selection.SelectFdr([score_func, alpha])
Filter: Select the p-values for an estimated false discovery rate.
feature_selection.SelectFromModel(estimator, *)
Meta-transformer for selecting features based on importance weights.
feature_selection.SelectFwe([score_func, alpha])
Filter: Select the p-values corresponding to Family-wise error rate.
feature_selection.SequentialFeatureSelector(...)
Transformer that performs Sequential Feature Selection.
feature_selection.RFE(estimator, *[, ...])
Feature ranking with recursive feature elimination.
feature_selection.RFECV(estimator, *[, ...])
Recursive feature elimination with cross-validation to select features.
feature_selection.VarianceThreshold([threshold])
Feature selector that removes all low-variance features.
feature_selection.chi2(X, y)
Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y)
Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y, *[, ...])
Univariate linear regression tests returning F-statistic and p-values.
feature_selection.r_regression(X, y, *[, ...])
Compute Pearson's r for each features and the target.
feature_selection.mutual_info_classif(X, y, *)
Estimate mutual information for a discrete target variable.
feature_selection.mutual_info_regression(X, y, *)
Estimate mutual information for a continuous target variable.
|feature_selection.GenericUnivariateSelect([...])|Univariate feature selector with configurable strategy.|
|feature_selection.SelectPercentile([...])|Select features according to a percentile of the highest scores.|
|feature_selection.SelectKBest([score_func, k])|Select features according to the k highest scores.|
|feature_selection.SelectFpr([score_func, alpha])|Filter: Select the pvalues below alpha based on a FPR test.|
|feature_selection.SelectFdr([score_func, alpha])|Filter: Select the p-values for an estimated false discovery rate.|
|feature_selection.SelectFromModel(estimator, *)|Meta-transformer for selecting features based on importance weights.|
|feature_selection.SelectFwe([score_func, alpha])|Filter: Select the p-values corresponding to Family-wise error rate.|
|feature_selection.SequentialFeatureSelector(...)|Transformer that performs Sequential Feature Selection.|
|feature_selection.RFE(estimator, *[, ...])|Feature ranking with recursive feature elimination.|
|feature_selection.RFECV(estimator, *[, ...])|Recursive feature elimination with cross-validation to select features.|
|feature_selection.VarianceThreshold([threshold])|Feature selector that removes all low-variance features.|
|feature_selection.chi2(X, y)|Compute chi-squared stats between each non-negative feature and class.|
|feature_selection.f_classif(X, y)|Compute the ANOVA F-value for the provided sample.|
|feature_selection.f_regression(X, y, *[, ...])|Univariate linear regression tests returning F-statistic and p-values.|
|feature_selection.r_regression(X, y, *[, ...])|Compute Pearson's r for each features and the target.|
|feature_selection.mutual_info_classif(X, y, *)|Estimate mutual information for a discrete target variable.|
|feature_selection.mutual_info_regression(X, y, *)|Estimate mutual information for a continuous target variable.|
## [sklearn.gaussian_process: Gaussian Processes]()
|||
|---|---|
gaussian_process.GaussianProcessClassifier([...])
Gaussian process classification (GPC) based on Laplace approximation.
gaussian_process.GaussianProcessRegressor([...])
Gaussian process regression (GPR).
|gaussian_process.GaussianProcessClassifier([...])|Gaussian process classification (GPC) based on Laplace approximation.|
|gaussian_process.GaussianProcessRegressor([...])|Gaussian process regression (GPR).|
### Kernels
|||
|---|---|
gaussian_process.kernels.CompoundKernel(kernels)
Kernel which is composed of a set of other kernels.
gaussian_process.kernels.ConstantKernel([...])
Constant kernel.
gaussian_process.kernels.DotProduct([...])
Dot-Product kernel.
gaussian_process.kernels.ExpSineSquared([...])
Exp-Sine-Squared kernel (aka periodic kernel).
gaussian_process.kernels.Exponentiation(...)
The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via
gaussian_process.kernels.Hyperparameter(...)
A kernel hyperparameter's specification in form of a namedtuple.
gaussian_process.kernels.Kernel()
Base class for all kernels.
gaussian_process.kernels.Matern([...])
Matern kernel.
gaussian_process.kernels.PairwiseKernel([...])
Wrapper for kernels in sklearn.metrics.pairwise.
gaussian_process.kernels.Product(k1, k2)
The Product kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.RBF([length_scale, ...])
Radial basis function kernel (aka squared-exponential kernel).
gaussian_process.kernels.RationalQuadratic([...])
Rational Quadratic kernel.
gaussian_process.kernels.Sum(k1, k2)
The Sum kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.WhiteKernel([...])
White kernel.
|gaussian_process.kernels.CompoundKernel(kernels)|Kernel which is composed of a set of other kernels.|
|gaussian_process.kernels.ConstantKernel([...])|Constant kernel.|
|gaussian_process.kernels.DotProduct([...])|Dot-Product kernel.|
|gaussian_process.kernels.ExpSineSquared([...])|Exp-Sine-Squared kernel (aka periodic kernel).|
|gaussian_process.kernels.Exponentiation(...)|The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via|
|gaussian_process.kernels.Hyperparameter(...)|A kernel hyperparameter's specification in form of a namedtuple.|
|gaussian_process.kernels.Kernel()|Base class for all kernels.|
|gaussian_process.kernels.Matern([...])|Matern kernel.|
|gaussian_process.kernels.PairwiseKernel([...])|Wrapper for kernels in sklearn.metrics.pairwise.|
|gaussian_process.kernels.Product(k1, k2)|The Product kernel takes two kernels k1 and k2 and combines them via|
|gaussian_process.kernels.RBF([length_scale, ...])|Radial basis function kernel (aka squared-exponential kernel).|
|gaussian_process.kernels.RationalQuadratic([...])|Rational Quadratic kernel.|
|gaussian_process.kernels.Sum(k1, k2)|The Sum kernel takes two kernels k1 and k2 and combines them via|
|gaussian_process.kernels.WhiteKernel([...])|White kernel.|
## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute)