Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
95c7a3777a
commit
92f9f42b6d
1 changed files with 27 additions and 0 deletions
|
@ -96,3 +96,30 @@ print(type(np.array(z))) # -> <class 'numpy.ndarray'>
|
||||||
print(type(z)) # -> <class 'int'>
|
print(type(z)) # -> <class 'int'>
|
||||||
print(z.shape) # -> AttributeError: 'int' object has no attribute 'shape'
|
print(z.shape) # -> AttributeError: 'int' object has no attribute 'shape'
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Stop vanishing dimensions
|
||||||
|
|
||||||
|
One way to do stop vanishing dimensions is to use slices of thickness 1. If you want the nth element, then use **n:n+1**:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
data = np.zeros((5, 3, 2))
|
||||||
|
|
||||||
|
# All the same dimensionwise
|
||||||
|
print(data.shape) # -> (5, 3, 2)
|
||||||
|
|
||||||
|
print(data[0:1, :, :].shape) # -> (1, 3, 2)
|
||||||
|
print(data[:, 0:1, :].shape) # -> (5, 1, 2)
|
||||||
|
print(data[:, :, 0:1].shape) # -> (5, 3, 1)
|
||||||
|
|
||||||
|
print(data[:, 0:1, 0:1].shape) # -> (5, 1, 1)
|
||||||
|
print(data[0:1, :, 0:1].shape) # -> (1, 3, 1)
|
||||||
|
print(data[0:1, 0:1, :].shape) # -> (1, 1, 2)
|
||||||
|
|
||||||
|
print(data[0:1, 0:1, 0:1].shape) # -> (1, 1, 1)
|
||||||
|
print(type(data[0:1, 0:1, 0:1])) # -> <class 'numpy.ndarray'>
|
||||||
|
```
|
||||||
|
|
||||||
|
**Please understand this creates a view which is connected to original data.** If necessary make a **copy()**.
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue