diff --git a/pywavelet/README.md b/pywavelet/README.md index 135b9f9..06050cf 100644 --- a/pywavelet/README.md +++ b/pywavelet/README.md @@ -128,7 +128,10 @@ import numpy as np import matplotlib.pyplot as plt f_test: float = 50 # Hz -t_test: np.ndarray = np.arange(0, 1000) / 1000 +number_of_test_samples: int = 1000 +dt: float = 1.0 / 1000 # sec + +t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) plt.plot(t_test, test_data) @@ -137,3 +140,46 @@ plt.ylabel("time series") ``` ![figure 4](image4.png) +```python +import numpy as np +import matplotlib.pyplot as plt +import pywt + +f_test: float = 50 # Hz +number_of_test_samples: int = 1000 + +# The wavelet we want to use +mother = pywt.ContinuousWavelet("cmor1.5-1.0") + +# Parameters for the wavelet transform +number_of_frequences: int = 25 # frequency bands +frequency_range_min: float = 15 # Hz +frequency_range_max: float = 200 # Hz +dt: float = 1.0 / 1000 # sec + +t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt +test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) + +# Calculate the wavelet scales we requested +s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( + frequency_range_max / frequency_range_min +) +scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) +frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) +wave_scales: np.ndarray = 1.0 / (frequency_axis_request * dt) + +complex_spectrum, frequency_axis = pywt.cwt(test_data, wave_scales, mother, dt) + +plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") +plt.colorbar() + +plt.yticks(np.arange(0, frequency_axis.shape[0]), frequency_axis) +plt.xticks(np.arange(0, t_test.shape[0]), t_test) + +plt.xlabel("Time [sec]") +plt.ylabel("Frequency [Hz]") +plt.show() +``` +![figure 5](image5.png) + +