Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
063761e60c
commit
9647e7fae1
1 changed files with 27 additions and 0 deletions
|
@ -117,4 +117,31 @@ performance = 100.0 * (prediction == label_test).sum() / prediction.shape[0]
|
|||
print(f"Performance correct: {performance}%") # -> Performance correct: 95.4%
|
||||
```
|
||||
|
||||
Sometimes it is useful to scale the value range of the individual features to the same range:
|
||||
|
||||
```pythonv
|
||||
import numpy as np
|
||||
import sklearn.svm # type:ignore
|
||||
|
||||
data_train = np.load("data_train.npy")
|
||||
data_test = np.load("data_test.npy")
|
||||
label_train = np.load("label_train.npy")
|
||||
label_test = np.load("label_test.npy")
|
||||
|
||||
svm = sklearn.svm.SVC()
|
||||
|
||||
min_value = data_train.min(axis=0, keepdims=True)
|
||||
data_train -= min_value
|
||||
data_test -= min_value
|
||||
|
||||
min_value = data_train.max(axis=0, keepdims=True)
|
||||
data_train /= min_value
|
||||
data_test /= min_value
|
||||
|
||||
svm.fit(X=data_train, y=label_train)
|
||||
prediction = svm.predict(X=data_test)
|
||||
|
||||
performance = 100.0 * (prediction == label_test).sum() / prediction.shape[0]
|
||||
|
||||
print(f"Performance correct: {performance}%")
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue