Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2024-02-07 15:24:41 +01:00 committed by GitHub
parent 063761e60c
commit 9647e7fae1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -117,4 +117,31 @@ performance = 100.0 * (prediction == label_test).sum() / prediction.shape[0]
print(f"Performance correct: {performance}%") # -> Performance correct: 95.4% print(f"Performance correct: {performance}%") # -> Performance correct: 95.4%
``` ```
Sometimes it is useful to scale the value range of the individual features to the same range:
```pythonv
import numpy as np
import sklearn.svm # type:ignore
data_train = np.load("data_train.npy")
data_test = np.load("data_test.npy")
label_train = np.load("label_train.npy")
label_test = np.load("label_test.npy")
svm = sklearn.svm.SVC()
min_value = data_train.min(axis=0, keepdims=True)
data_train -= min_value
data_test -= min_value
min_value = data_train.max(axis=0, keepdims=True)
data_train /= min_value
data_test /= min_value
svm.fit(X=data_train, y=label_train)
prediction = svm.predict(X=data_test)
performance = 100.0 * (prediction == label_test).sum() / prediction.shape[0]
print(f"Performance correct: {performance}%")
```