Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
8ff18384fe
commit
9a59257ada
1 changed files with 35 additions and 2 deletions
|
@ -61,7 +61,7 @@ z = y.series(x, 0, 8) # around x = 0 , up order 7
|
|||
print(z) # -> 1 - x**2/2 + x**4/24 - x**6/720 + O(x**8)
|
||||
```
|
||||
|
||||
## [simplify](https://docs.sympy.org/latest/tutorials/intro-tutorial/simplification.html#simplify)
|
||||
### [simplify](https://docs.sympy.org/latest/tutorials/intro-tutorial/simplification.html#simplify)
|
||||
|
||||
```python
|
||||
import sympy
|
||||
|
@ -72,7 +72,11 @@ y = sympy.simplify(sympy.sin(x) ** 2 + sympy.cos(x) ** 2)
|
|||
print(y) # -> 1
|
||||
```
|
||||
|
||||
## [Solving Equations Algebraically](https://docs.sympy.org/latest/tutorials/intro-tutorial/solvers.html)
|
||||
### [Solving Equations Algebraically](https://docs.sympy.org/latest/tutorials/intro-tutorial/solvers.html)
|
||||
|
||||
```python
|
||||
solveset(equation, variable=None, domain=S.Complexes)
|
||||
```
|
||||
|
||||
> Recall from the [gotchas section](https://docs.sympy.org/latest/tutorials/intro-tutorial/gotchas.html#tutorial-gotchas-equals) of this tutorial that symbolic equations in SymPy are not represented by = or ==, but by Eq.
|
||||
|
||||
|
@ -89,3 +93,32 @@ Output:
|
|||
$$x=y$$
|
||||
|
||||
|
||||
```python
|
||||
import sympy
|
||||
|
||||
x, y, z = sympy.symbols("x y z")
|
||||
|
||||
y = sympy.Eq(x**2 - x, 0)
|
||||
z = sympy.solveset(y, x)
|
||||
print(z) # -> {0, 1}
|
||||
```
|
||||
|
||||
### [Solving Differential Equations](https://docs.sympy.org/latest/tutorials/intro-tutorial/solvers.html#solving-differential-equations)
|
||||
|
||||
```python
|
||||
import sympy
|
||||
|
||||
# Undefined functions
|
||||
f = sympy.symbols("f", cls=sympy.Function)
|
||||
|
||||
x = sympy.symbols("x")
|
||||
|
||||
|
||||
diffeq = sympy.Eq(f(x).diff(x, x) - 2 * f(x).diff(x) + f(x), sympy.sin(x))
|
||||
|
||||
print(diffeq) # -> Eq(f(x) - 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)), sin(x))
|
||||
|
||||
result = sympy.dsolve(diffeq, f(x))
|
||||
print(result) # -> Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in a new issue