Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
35dd8fafaf
commit
ac79146816
1 changed files with 248 additions and 10 deletions
|
@ -16,6 +16,8 @@ Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||||
|
|
||||||
### Network
|
### Network
|
||||||
|
|
||||||
|
**Note: Okay, I forgot the full layer somehow but it is still at 99%.**
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
@ -250,28 +252,32 @@ import matplotlib.pyplot as plt
|
||||||
from tensorboard.backend.event_processing import event_accumulator
|
from tensorboard.backend.event_processing import event_accumulator
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
path: str = "./runs/Jan26_18-03-23_doppio/" # this way tensorboard directory
|
path: str = "run"
|
||||||
|
|
||||||
acc = event_accumulator.EventAccumulator(path)
|
acc = event_accumulator.EventAccumulator(path)
|
||||||
acc.Reload()
|
acc.Reload()
|
||||||
|
|
||||||
available_scalar = acc.Tags()["scalars"]
|
available_scalar = acc.Tags()["scalars"]
|
||||||
available_histograms = acc.Tags()["histograms"]
|
available_histograms = acc.Tags()["histograms"]
|
||||||
print("Available Scalars")
|
print("Available Scalars:")
|
||||||
print(available_scalar)
|
print(available_scalar)
|
||||||
|
print()
|
||||||
|
|
||||||
print("Available Histograms")
|
print("Available Histograms:")
|
||||||
print(available_histograms)
|
print(available_histograms)
|
||||||
|
|
||||||
which_scalar = "Train Performance"
|
which_scalar = "Test Number Correct"
|
||||||
te = acc.Scalars(which_scalar)
|
te = acc.Scalars(which_scalar)
|
||||||
# %%
|
|
||||||
temp = []
|
|
||||||
for te_item in te:
|
|
||||||
temp.append((te_item[1], te_item[2]))
|
|
||||||
temp = np.array(temp)
|
|
||||||
|
|
||||||
plt.plot(temp[:, 0], temp[:, 1])
|
np_temp = np.zeros((len(te), 2))
|
||||||
|
|
||||||
|
for id in range(0, len(te)):
|
||||||
|
np_temp[id, 0] = te[id].step
|
||||||
|
np_temp[id, 1] = te[id].value
|
||||||
|
print(np_temp)
|
||||||
|
|
||||||
|
|
||||||
|
plt.plot(np_temp[:, 0], np_temp[:, 1])
|
||||||
plt.xlabel("Steps")
|
plt.xlabel("Steps")
|
||||||
plt.ylabel("Train Performance")
|
plt.ylabel("Train Performance")
|
||||||
plt.title(which_scalar)
|
plt.title(which_scalar)
|
||||||
|
@ -526,6 +532,8 @@ Time: Training=9.4sec, Testing=0.4sec
|
||||||
|
|
||||||
## MNIST with Adam, ReduceLROnPlateau, cross-entropy on GPU
|
## MNIST with Adam, ReduceLROnPlateau, cross-entropy on GPU
|
||||||
|
|
||||||
|
![image1](image1.png)
|
||||||
|
|
||||||
Here a list of the changes:
|
Here a list of the changes:
|
||||||
|
|
||||||
Added to the beginning
|
Added to the beginning
|
||||||
|
@ -818,3 +826,233 @@ def class_to_one_hot(
|
||||||
output, class_to_one_hot(target, number_of_output_channels_full1)
|
output, class_to_one_hot(target, number_of_output_channels_full1)
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Full source:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchvision # type:ignore
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
|
||||||
|
def class_to_one_hot(
|
||||||
|
correct_label: torch.Tensor, number_of_neurons: int
|
||||||
|
) -> torch.Tensor:
|
||||||
|
target_one_hot: torch.Tensor = torch.zeros(
|
||||||
|
(correct_label.shape[0], number_of_neurons)
|
||||||
|
)
|
||||||
|
target_one_hot.scatter_(
|
||||||
|
1, correct_label.unsqueeze(1), torch.ones((correct_label.shape[0], 1))
|
||||||
|
)
|
||||||
|
|
||||||
|
return target_one_hot
|
||||||
|
|
||||||
|
|
||||||
|
assert torch.cuda.is_available() is True
|
||||||
|
device_gpu = torch.device("cuda:0")
|
||||||
|
|
||||||
|
|
||||||
|
class MyDataset(torch.utils.data.Dataset):
|
||||||
|
# Initialize
|
||||||
|
def __init__(self, train: bool = False) -> None:
|
||||||
|
super(MyDataset, self).__init__()
|
||||||
|
|
||||||
|
if train is True:
|
||||||
|
self.pattern_storage: np.ndarray = np.load("train_pattern_storage.npy")
|
||||||
|
self.label_storage: np.ndarray = np.load("train_label_storage.npy")
|
||||||
|
else:
|
||||||
|
self.pattern_storage = np.load("test_pattern_storage.npy")
|
||||||
|
self.label_storage = np.load("test_label_storage.npy")
|
||||||
|
|
||||||
|
self.pattern_storage = self.pattern_storage.astype(np.float32)
|
||||||
|
self.pattern_storage /= np.max(self.pattern_storage)
|
||||||
|
|
||||||
|
# How many pattern are there?
|
||||||
|
self.number_of_pattern: int = self.label_storage.shape[0]
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return self.number_of_pattern
|
||||||
|
|
||||||
|
# Get one pattern at position index
|
||||||
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||||
|
image = torch.tensor(self.pattern_storage[index, np.newaxis, :, :])
|
||||||
|
target = int(self.label_storage[index])
|
||||||
|
|
||||||
|
return image, target
|
||||||
|
|
||||||
|
|
||||||
|
# Some parameters
|
||||||
|
input_number_of_channel: int = 1
|
||||||
|
input_dim_x: int = 24
|
||||||
|
input_dim_y: int = 24
|
||||||
|
|
||||||
|
number_of_output_channels_conv1: int = 32
|
||||||
|
number_of_output_channels_conv2: int = 64
|
||||||
|
number_of_output_channels_flatten1: int = 576
|
||||||
|
number_of_output_channels_full1: int = 10
|
||||||
|
|
||||||
|
kernel_size_conv1: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool1: tuple[int, int] = (2, 2)
|
||||||
|
kernel_size_conv2: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
stride_conv1: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool1: tuple[int, int] = (2, 2)
|
||||||
|
stride_conv2: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
padding_conv1: int = 0
|
||||||
|
padding_pool1: int = 0
|
||||||
|
padding_conv2: int = 0
|
||||||
|
padding_pool2: int = 0
|
||||||
|
|
||||||
|
network = torch.nn.Sequential(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=input_number_of_channel,
|
||||||
|
out_channels=number_of_output_channels_conv1,
|
||||||
|
kernel_size=kernel_size_conv1,
|
||||||
|
stride=stride_conv1,
|
||||||
|
padding=padding_conv1,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
|
||||||
|
),
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=number_of_output_channels_conv1,
|
||||||
|
out_channels=number_of_output_channels_conv2,
|
||||||
|
kernel_size=kernel_size_conv2,
|
||||||
|
stride=stride_conv2,
|
||||||
|
padding=padding_conv2,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
|
||||||
|
),
|
||||||
|
torch.nn.Flatten(
|
||||||
|
start_dim=1,
|
||||||
|
),
|
||||||
|
torch.nn.Linear(
|
||||||
|
in_features=number_of_output_channels_flatten1,
|
||||||
|
out_features=number_of_output_channels_full1,
|
||||||
|
bias=True,
|
||||||
|
),
|
||||||
|
torch.nn.Softmax(dim=1),
|
||||||
|
).to(device=device_gpu)
|
||||||
|
|
||||||
|
test_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[torchvision.transforms.CenterCrop((24, 24))],
|
||||||
|
)
|
||||||
|
|
||||||
|
train_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[torchvision.transforms.RandomCrop((24, 24))],
|
||||||
|
)
|
||||||
|
|
||||||
|
dataset_train = MyDataset(train=True)
|
||||||
|
dataset_test = MyDataset(train=False)
|
||||||
|
batch_size_train = 100
|
||||||
|
batch_size_test = 100
|
||||||
|
|
||||||
|
train_data_load = torch.utils.data.DataLoader(
|
||||||
|
dataset_train, batch_size=batch_size_train, shuffle=True
|
||||||
|
)
|
||||||
|
|
||||||
|
test_data_load = torch.utils.data.DataLoader(
|
||||||
|
dataset_test, batch_size=batch_size_test, shuffle=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# -------------------------------------------
|
||||||
|
|
||||||
|
# The optimizer
|
||||||
|
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
|
||||||
|
|
||||||
|
# The LR Scheduler
|
||||||
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
|
||||||
|
|
||||||
|
number_of_test_pattern: int = dataset_test.__len__()
|
||||||
|
number_of_train_pattern: int = dataset_train.__len__()
|
||||||
|
|
||||||
|
number_of_epoch: int = 50
|
||||||
|
|
||||||
|
tb = SummaryWriter(log_dir="run")
|
||||||
|
|
||||||
|
loss_function = torch.nn.MSELoss()
|
||||||
|
|
||||||
|
for epoch_id in range(0, number_of_epoch):
|
||||||
|
print(f"Epoch: {epoch_id}")
|
||||||
|
t_start: float = time.perf_counter()
|
||||||
|
|
||||||
|
train_loss: float = 0.0
|
||||||
|
train_correct: int = 0
|
||||||
|
train_number: int = 0
|
||||||
|
test_correct: int = 0
|
||||||
|
test_number: int = 0
|
||||||
|
|
||||||
|
# Switch the network into training mode
|
||||||
|
network.train()
|
||||||
|
|
||||||
|
# This runs in total for one epoch split up into mini-batches
|
||||||
|
for image, target in train_data_load:
|
||||||
|
# Clean the gradient
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
output = network(train_processing_chain(image).to(device=device_gpu))
|
||||||
|
|
||||||
|
loss = loss_function(
|
||||||
|
output,
|
||||||
|
class_to_one_hot(target, number_of_output_channels_full1).to(
|
||||||
|
device=device_gpu
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
train_loss += loss.item()
|
||||||
|
train_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||||
|
train_number += target.shape[0]
|
||||||
|
# Calculate backprop
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# Update the parameter
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# Update the learning rate
|
||||||
|
lr_scheduler.step(train_loss)
|
||||||
|
|
||||||
|
t_training: float = time.perf_counter()
|
||||||
|
|
||||||
|
# Switch the network into evalution mode
|
||||||
|
network.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
for image, target in test_data_load:
|
||||||
|
output = network(test_processing_chain(image).to(device=device_gpu))
|
||||||
|
|
||||||
|
test_correct += (output.argmax(dim=1).cpu() == target).sum().numpy()
|
||||||
|
test_number += target.shape[0]
|
||||||
|
|
||||||
|
t_testing = time.perf_counter()
|
||||||
|
|
||||||
|
perfomance_test_correct: float = 100.0 * test_correct / test_number
|
||||||
|
perfomance_train_correct: float = 100.0 * train_correct / train_number
|
||||||
|
|
||||||
|
tb.add_scalar("Train Loss", train_loss, epoch_id)
|
||||||
|
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
|
||||||
|
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
|
||||||
|
|
||||||
|
print(f"Training: Loss={train_loss:.5f} Correct={perfomance_train_correct:.2f}%")
|
||||||
|
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
|
||||||
|
print(
|
||||||
|
f"Time: Training={(t_training-t_start):.1f}sec, Testing={(t_testing-t_training):.1f}sec"
|
||||||
|
)
|
||||||
|
torch.save(network, "Model_MNIST_A_" + str(epoch_id) + ".pt")
|
||||||
|
print()
|
||||||
|
|
||||||
|
tb.flush()
|
||||||
|
|
||||||
|
tb.close()
|
||||||
|
```
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue