From adf1be8246f5db8c4047a48a487e641dd6b83d82 Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Sat, 16 Dec 2023 14:58:22 +0100 Subject: [PATCH] Update README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- scikit-learn/overview/README.md | 189 +++++++++++++++++++++++++++++++- 1 file changed, 188 insertions(+), 1 deletion(-) diff --git a/scikit-learn/overview/README.md b/scikit-learn/overview/README.md index 79f7ecb..19650c9 100644 --- a/scikit-learn/overview/README.md +++ b/scikit-learn/overview/README.md @@ -548,7 +548,194 @@ Approximate a RBF kernel feature map using random Fourier features. kernel_approximation.SkewedChi2Sampler(*[, ...]) Approximate feature map for "skewed chi-squared" kernel. -# --------------- +## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge) + +kernel_ridge.KernelRidge([alpha, kernel, ...]) +Kernel ridge regression. + +## [sklearn.linear_model: Linear Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) + +### Linear classifiers + +linear_model.LogisticRegression([penalty, ...]) +Logistic Regression (aka logit, MaxEnt) classifier. + +linear_model.LogisticRegressionCV(*[, Cs, ...]) +Logistic Regression CV (aka logit, MaxEnt) classifier. + +linear_model.PassiveAggressiveClassifier(*) +Passive Aggressive Classifier. + +linear_model.Perceptron(*[, penalty, alpha, ...]) +Linear perceptron classifier. + +linear_model.RidgeClassifier([alpha, ...]) +Classifier using Ridge regression. + +linear_model.RidgeClassifierCV([alphas, ...]) +Ridge classifier with built-in cross-validation. + +linear_model.SGDClassifier([loss, penalty, ...]) +Linear classifiers (SVM, logistic regression, etc.) with SGD training. + +linear_model.SGDOneClassSVM([nu, ...]) +Solves linear One-Class SVM using Stochastic Gradient Descent. + +### Classical linear regressors + +linear_model.LinearRegression(*[, ...]) +Ordinary least squares Linear Regression. + +linear_model.Ridge([alpha, fit_intercept, ...]) +Linear least squares with l2 regularization. + +linear_model.RidgeCV([alphas, ...]) +Ridge regression with built-in cross-validation. + +linear_model.SGDRegressor([loss, penalty, ...]) +Linear model fitted by minimizing a regularized empirical loss with SGD. + +### Regressors with variable selection + + +linear_model.ElasticNet([alpha, l1_ratio, ...]) +Linear regression with combined L1 and L2 priors as regularizer. + +linear_model.ElasticNetCV(*[, l1_ratio, ...]) +Elastic Net model with iterative fitting along a regularization path. + +linear_model.Lars(*[, fit_intercept, ...]) +Least Angle Regression model a.k.a. + +linear_model.LarsCV(*[, fit_intercept, ...]) +Cross-validated Least Angle Regression model. + +linear_model.Lasso([alpha, fit_intercept, ...]) +Linear Model trained with L1 prior as regularizer (aka the Lasso). + +linear_model.LassoCV(*[, eps, n_alphas, ...]) +Lasso linear model with iterative fitting along a regularization path. + +linear_model.LassoLars([alpha, ...]) +Lasso model fit with Least Angle Regression a.k.a. + +linear_model.LassoLarsCV(*[, fit_intercept, ...]) +Cross-validated Lasso, using the LARS algorithm. + +linear_model.LassoLarsIC([criterion, ...]) +Lasso model fit with Lars using BIC or AIC for model selection. + +linear_model.OrthogonalMatchingPursuit(*[, ...]) +Orthogonal Matching Pursuit model (OMP). + +linear_model.OrthogonalMatchingPursuitCV(*) +Cross-validated Orthogonal Matching Pursuit model (OMP). + +### Bayesian regressors + +linear_model.ARDRegression(*[, max_iter, ...]) +Bayesian ARD regression. + +linear_model.BayesianRidge(*[, max_iter, ...]) +Bayesian ridge regression. + +### Multi-task linear regressors with variable selection + +linear_model.MultiTaskElasticNet([alpha, ...]) +Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer. + +linear_model.MultiTaskElasticNetCV(*[, ...]) +Multi-task L1/L2 ElasticNet with built-in cross-validation. + +linear_model.MultiTaskLasso([alpha, ...]) +Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer. + +linear_model.MultiTaskLassoCV(*[, eps, ...]) +Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer. + +### Outlier-robust regressors + + +linear_model.HuberRegressor(*[, epsilon, ...]) +L2-regularized linear regression model that is robust to outliers. + +linear_model.QuantileRegressor(*[, ...]) +Linear regression model that predicts conditional quantiles. + +linear_model.RANSACRegressor([estimator, ...]) +RANSAC (RANdom SAmple Consensus) algorithm. + +linear_model.TheilSenRegressor(*[, ...]) +Theil-Sen Estimator: robust multivariate regression model. + +### Generalized linear models (GLM) for regression + +linear_model.PoissonRegressor(*[, alpha, ...]) +Generalized Linear Model with a Poisson distribution. + +linear_model.TweedieRegressor(*[, power, ...]) +Generalized Linear Model with a Tweedie distribution. + +linear_model.GammaRegressor(*[, alpha, ...]) +Generalized Linear Model with a Gamma distribution. + +### Miscellaneous + +linear_model.PassiveAggressiveRegressor(*[, ...]) +Passive Aggressive Regressor. + +linear_model.enet_path(X, y, *[, l1_ratio, ...]) +Compute elastic net path with coordinate descent. + +linear_model.lars_path(X, y[, Xy, Gram, ...]) +Compute Least Angle Regression or Lasso path using the LARS algorithm [1]. + +linear_model.lars_path_gram(Xy, Gram, *, ...) +The lars_path in the sufficient stats mode [1]. + +linear_model.lasso_path(X, y, *[, eps, ...]) +Compute Lasso path with coordinate descent. + +linear_model.orthogonal_mp(X, y, *[, ...]) +Orthogonal Matching Pursuit (OMP). + +linear_model.orthogonal_mp_gram(Gram, Xy, *) +Gram Orthogonal Matching Pursuit (OMP). + +linear_model.ridge_regression(X, y, alpha, *) +Solve the ridge equation by the method of normal equations. + +## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold) + + +manifold.Isomap(*[, n_neighbors, radius, ...]) +Isomap Embedding. + +manifold.LocallyLinearEmbedding(*[, ...]) +Locally Linear Embedding. + +manifold.MDS([n_components, metric, n_init, ...]) +Multidimensional scaling. + +manifold.SpectralEmbedding([n_components, ...]) +Spectral embedding for non-linear dimensionality reduction. + +manifold.TSNE([n_components, perplexity, ...]) +T-distributed Stochastic Neighbor Embedding. + +manifold.locally_linear_embedding(X, *, ...) +Perform a Locally Linear Embedding analysis on the data. + +manifold.smacof(dissimilarities, *[, ...]) +Compute multidimensional scaling using the SMACOF algorithm. + +manifold.spectral_embedding(adjacency, *[, ...]) +Project the sample on the first eigenvectors of the graph Laplacian. + +manifold.trustworthiness(X, X_embedded, *[, ...]) +Indicate to what extent the local structure is retained. + + ## [sklearn.metrics: Metrics](https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics)