Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
726b6d0ab8
commit
bc4b525e15
1 changed files with 41 additions and 121 deletions
|
@ -80,81 +80,38 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.b
|
|||
|
||||
|||
|
||||
|---|---|
|
||||
compose.ColumnTransformer(transformers, *[, ...])
|
||||
Applies transformers to columns of an array or pandas DataFrame.
|
||||
|
||||
compose.TransformedTargetRegressor([...])
|
||||
Meta-estimator to regress on a transformed target.
|
||||
|
||||
compose.make_column_transformer(*transformers)
|
||||
Construct a ColumnTransformer from the given transformers.
|
||||
|
||||
compose.make_column_selector([pattern, ...])
|
||||
Create a callable to select columns to be used with ColumnTransformer.
|
||||
|compose.ColumnTransformer(transformers, *[, ...])|Applies transformers to columns of an array or pandas DataFrame.|
|
||||
|compose.TransformedTargetRegressor([...])|Meta-estimator to regress on a transformed target.|
|
||||
|compose.make_column_transformer(*transformers)|Construct a ColumnTransformer from the given transformers.|
|
||||
|compose.make_column_selector([pattern, ...])|Create a callable to select columns to be used with ColumnTransformer.|
|
||||
|
||||
## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
covariance.EmpiricalCovariance(*[, ...])
|
||||
Maximum likelihood covariance estimator.
|
||||
|
||||
covariance.EllipticEnvelope(*[, ...])
|
||||
An object for detecting outliers in a Gaussian distributed dataset.
|
||||
|
||||
covariance.GraphicalLasso([alpha, mode, ...])
|
||||
Sparse inverse covariance estimation with an l1-penalized estimator.
|
||||
|
||||
covariance.GraphicalLassoCV(*[, alphas, ...])
|
||||
Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
|
||||
|
||||
covariance.LedoitWolf(*[, store_precision, ...])
|
||||
LedoitWolf Estimator.
|
||||
|
||||
covariance.MinCovDet(*[, store_precision, ...])
|
||||
Minimum Covariance Determinant (MCD): robust estimator of covariance.
|
||||
|
||||
covariance.OAS(*[, store_precision, ...])
|
||||
Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].
|
||||
|
||||
covariance.ShrunkCovariance(*[, ...])
|
||||
Covariance estimator with shrinkage.
|
||||
|
||||
covariance.empirical_covariance(X, *[, ...])
|
||||
Compute the Maximum likelihood covariance estimator.
|
||||
|
||||
covariance.graphical_lasso(emp_cov, alpha, *)
|
||||
L1-penalized covariance estimator.
|
||||
|
||||
covariance.ledoit_wolf(X, *[, ...])
|
||||
Estimate the shrunk Ledoit-Wolf covariance matrix.
|
||||
|
||||
covariance.ledoit_wolf_shrinkage(X[, ...])
|
||||
Estimate the shrunk Ledoit-Wolf covariance matrix.
|
||||
|
||||
covariance.oas(X, *[, assume_centered])
|
||||
Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].
|
||||
|
||||
covariance.shrunk_covariance(emp_cov[, ...])
|
||||
Calculate a covariance matrix shrunk on the diagonal.
|
||||
|
||||
|covariance.EmpiricalCovariance(*[, ...])|Maximum likelihood covariance estimator.|
|
||||
|covariance.EllipticEnvelope(*[, ...])|An object for detecting outliers in a Gaussian distributed dataset.|
|
||||
|covariance.GraphicalLasso([alpha, mode, ...])|Sparse inverse covariance estimation with an l1-penalized estimator.|
|
||||
|covariance.GraphicalLassoCV(*[, alphas, ...])|Sparse inverse covariance w/ cross-validated choice of the l1 penalty.|
|
||||
|covariance.LedoitWolf(*[, store_precision, ...])|LedoitWolf Estimator.|
|
||||
|covariance.MinCovDet(*[, store_precision, ...])|Minimum Covariance Determinant (MCD): robust estimator of covariance.|
|
||||
|covariance.OAS(*[, store_precision, ...])|Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].|
|
||||
|covariance.ShrunkCovariance(*[, ...])|Covariance estimator with shrinkage.|
|
||||
|covariance.empirical_covariance(X, *[, ...])|Compute the Maximum likelihood covariance estimator.|
|
||||
|covariance.graphical_lasso(emp_cov, alpha, *)|L1-penalized covariance estimator.|
|
||||
|covariance.ledoit_wolf(X, *[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.|
|
||||
|covariance.ledoit_wolf_shrinkage(X[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.|
|
||||
|covariance.oas(X, *[, assume_centered])|Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].|
|
||||
|covariance.shrunk_covariance(emp_cov[, ...])|Calculate a covariance matrix shrunk on the diagonal.|
|
||||
|
||||
## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
cross_decomposition.CCA([n_components, ...])
|
||||
Canonical Correlation Analysis, also known as "Mode B" PLS.
|
||||
|
||||
cross_decomposition.PLSCanonical([...])
|
||||
Partial Least Squares transformer and regressor.
|
||||
|
||||
cross_decomposition.PLSRegression([...])
|
||||
PLS regression.
|
||||
|
||||
cross_decomposition.PLSSVD([n_components, ...])
|
||||
Partial Least Square SVD.
|
||||
|
||||
|cross_decomposition.CCA([n_components, ...])|Canonical Correlation Analysis, also known as "Mode B" PLS.|
|
||||
|cross_decomposition.PLSCanonical([...])|Partial Least Squares transformer and regressor.|
|
||||
|cross_decomposition.PLSRegression([...])|PLS regression.|
|
||||
|cross_decomposition.PLSSVD([n_components, ...])|Partial Least Square SVD.|
|
||||
|
||||
## [sklearn.datasets: Datasets](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets)
|
||||
|
||||
|
@ -166,62 +123,25 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d
|
|||
|
||||
|||
|
||||
|---|---|
|
||||
decomposition.DictionaryLearning([...])
|
||||
Dictionary learning.
|
||||
|
||||
decomposition.FactorAnalysis([n_components, ...])
|
||||
Factor Analysis (FA).
|
||||
|
||||
**decomposition.FastICA([n_components, ...])**
|
||||
**FastICA: a fast algorithm for Independent Component Analysis.**
|
||||
|
||||
decomposition.IncrementalPCA([n_components, ...])
|
||||
Incremental principal components analysis (IPCA).
|
||||
|
||||
decomposition.KernelPCA([n_components, ...])
|
||||
Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].
|
||||
|
||||
decomposition.LatentDirichletAllocation([...])
|
||||
Latent Dirichlet Allocation with online variational Bayes algorithm.
|
||||
|
||||
decomposition.MiniBatchDictionaryLearning([...])
|
||||
Mini-batch dictionary learning.
|
||||
|
||||
decomposition.MiniBatchSparsePCA([...])
|
||||
Mini-batch Sparse Principal Components Analysis.
|
||||
|
||||
decomposition.NMF([n_components, init, ...])
|
||||
Non-Negative Matrix Factorization (NMF).
|
||||
|
||||
decomposition.MiniBatchNMF([n_components, ...])
|
||||
Mini-Batch Non-Negative Matrix Factorization (NMF).
|
||||
|
||||
**decomposition.PCA([n_components, copy, ...])**
|
||||
**Principal component analysis (PCA).**
|
||||
|
||||
decomposition.SparsePCA([n_components, ...])
|
||||
Sparse Principal Components Analysis (SparsePCA).
|
||||
|
||||
decomposition.SparseCoder(dictionary, *[, ...])
|
||||
Sparse coding.
|
||||
|
||||
decomposition.TruncatedSVD([n_components, ...])
|
||||
Dimensionality reduction using truncated SVD (aka LSA).
|
||||
|
||||
decomposition.dict_learning(X, n_components, ...)
|
||||
Solve a dictionary learning matrix factorization problem.
|
||||
|
||||
decomposition.dict_learning_online(X[, ...])
|
||||
Solve a dictionary learning matrix factorization problem online.
|
||||
|
||||
decomposition.fastica(X[, n_components, ...])
|
||||
Perform Fast Independent Component Analysis.
|
||||
|
||||
decomposition.non_negative_factorization(X)
|
||||
Compute Non-negative Matrix Factorization (NMF).
|
||||
|
||||
decomposition.sparse_encode(X, dictionary, *)
|
||||
Sparse coding.
|
||||
|decomposition.DictionaryLearning([...])|Dictionary learning.|
|
||||
|decomposition.FactorAnalysis([n_components, ...])|Factor Analysis (FA).|
|
||||
|**decomposition.FastICA([n_components, ...])**|**FastICA: a fast algorithm for Independent Component Analysis.**|
|
||||
|decomposition.IncrementalPCA([n_components, ...])|Incremental principal components analysis (IPCA).|
|
||||
|decomposition.KernelPCA([n_components, ...])|Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].|
|
||||
|decomposition.LatentDirichletAllocation([...])|Latent Dirichlet Allocation with online variational Bayes algorithm.|
|
||||
|decomposition.MiniBatchDictionaryLearning([...])|Mini-batch dictionary learning.|
|
||||
|decomposition.MiniBatchSparsePCA([...])|Mini-batch Sparse Principal Components Analysis.|
|
||||
|decomposition.NMF([n_components, init, ...])|Non-Negative Matrix Factorization (NMF).|
|
||||
|decomposition.MiniBatchNMF([n_components, ...])|Mini-Batch Non-Negative Matrix Factorization (NMF).|
|
||||
|**decomposition.PCA([n_components, copy, ...])**|**Principal component analysis (PCA).**|
|
||||
|decomposition.SparsePCA([n_components, ...])|Sparse Principal Components Analysis (SparsePCA).|
|
||||
|decomposition.SparseCoder(dictionary, *[, ...])|Sparse coding.|
|
||||
|decomposition.TruncatedSVD([n_components, ...])|Dimensionality reduction using truncated SVD (aka LSA).|
|
||||
|decomposition.dict_learning(X, n_components, ...)|Solve a dictionary learning matrix factorization problem.|
|
||||
|decomposition.dict_learning_online(X[, ...])|Solve a dictionary learning matrix factorization problem online.|
|
||||
|decomposition.fastica(X[, n_components, ...])|Perform Fast Independent Component Analysis.|
|
||||
|decomposition.non_negative_factorization(X)|Compute Non-negative Matrix Factorization (NMF).|
|
||||
|decomposition.sparse_encode(X, dictionary, *)|Sparse coding.|
|
||||
|
||||
## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis)
|
||||
|
||||
|
|
Loading…
Reference in a new issue