Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
09c2aa2d8f
commit
bcb2e09d56
1 changed files with 92 additions and 1 deletions
|
@ -24,7 +24,98 @@ CLASS torch.nn.Sequential(*args: Module)
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
|
|
||||||
```python
|
![image0](network_0.png)
|
||||||
|
|
||||||
|
We can just chain the layers together:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
|
||||||
|
input_number_of_channel: int = 1
|
||||||
|
input_dim_x: int = 24
|
||||||
|
input_dim_y: int = 24
|
||||||
|
|
||||||
|
number_of_output_channels_conv1: int = 32
|
||||||
|
number_of_output_channels_conv2: int = 64
|
||||||
|
number_of_output_channels_flatten1: int
|
||||||
|
number_of_output_channels_full1: int = 1024
|
||||||
|
number_of_output_channels_out: int = 10
|
||||||
|
|
||||||
|
kernel_size_conv1: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool1: tuple[int, int] = (2, 2)
|
||||||
|
kernel_size_conv2: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
stride_conv1: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool1: tuple[int, int] = (2, 2)
|
||||||
|
stride_conv2: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
padding_conv1: int = 0
|
||||||
|
padding_pool1: int = 0
|
||||||
|
padding_conv2: int = 0
|
||||||
|
padding_pool2: int = 0
|
||||||
|
|
||||||
|
number_of_output_channels_flatten1 = 576
|
||||||
|
|
||||||
|
network = torch.nn.Sequential(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=input_number_of_channel,
|
||||||
|
out_channels=number_of_output_channels_conv1,
|
||||||
|
kernel_size=kernel_size_conv1,
|
||||||
|
stride=stride_conv1,
|
||||||
|
padding=padding_conv1,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
|
||||||
|
),
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=number_of_output_channels_conv1,
|
||||||
|
out_channels=number_of_output_channels_conv2,
|
||||||
|
kernel_size=kernel_size_conv2,
|
||||||
|
stride=stride_conv2,
|
||||||
|
padding=padding_conv2,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
|
||||||
|
),
|
||||||
|
torch.nn.Flatten(
|
||||||
|
start_dim=1,
|
||||||
|
),
|
||||||
|
torch.nn.Linear(
|
||||||
|
in_features=number_of_output_channels_flatten1,
|
||||||
|
out_features=number_of_output_channels_full1,
|
||||||
|
bias=True,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.Linear(
|
||||||
|
in_features=number_of_output_channels_full1,
|
||||||
|
out_features=number_of_output_channels_out,
|
||||||
|
bias=True,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
print(network)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
Sequential(
|
||||||
|
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
|
||||||
|
(1): ReLU()
|
||||||
|
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
|
||||||
|
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
|
||||||
|
(4): ReLU()
|
||||||
|
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
|
||||||
|
(6): Flatten(start_dim=1, end_dim=-1)
|
||||||
|
(7): Linear(in_features=576, out_features=1024, bias=True)
|
||||||
|
(8): ReLU()
|
||||||
|
(9): Linear(in_features=1024, out_features=10, bias=True)
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Congratulations you now have the network you wanted.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue