Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
8776f03fbb
commit
bffbab8b7c
1 changed files with 84 additions and 1 deletions
|
@ -324,7 +324,7 @@ H NaN
|
|||
dtype: float64
|
||||
```
|
||||
|
||||
#### Example: Applying numpy functions ([pandas.Series.apply](https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html))
|
||||
#### Example: Applying functions ([pandas.Series.apply](https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html))
|
||||
|
||||
```python
|
||||
Series.apply(func, convert_dtype=_NoDefault.no_default, args=(), *, by_row='compat', **kwargs)
|
||||
|
@ -385,6 +385,89 @@ E 0.000000
|
|||
dtype: float64
|
||||
```
|
||||
|
||||
## [pandas.Series.isnull](https://pandas.pydata.org/docs/reference/api/pandas.Series.isnull.html)
|
||||
|
||||
**Note: A value set to NONE will lead to a NaN.**
|
||||
|
||||
```python
|
||||
Series.isnull()
|
||||
```
|
||||
|
||||
> Series.isnull is an alias for Series.isna.
|
||||
>
|
||||
> Detect missing values.
|
||||
>
|
||||
> Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).
|
||||
|
||||
```python
|
||||
Series.notna()
|
||||
```
|
||||
> Detect existing (non-missing) values.
|
||||
>
|
||||
> Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.
|
||||
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
index_1 = pd.Series(["A", "B", "C", "D", "E"])
|
||||
rng = np.random.default_rng()
|
||||
np_data_1 = rng.random((5))
|
||||
data_1 = pd.Series(np_data_1, index=index_1)
|
||||
|
||||
index_2 = pd.Series(["D", "E", "F", "G", "H"])
|
||||
rng = np.random.default_rng()
|
||||
np_data_2 = rng.random((5))
|
||||
data_2 = pd.Series(np_data_2, index=index_2)
|
||||
|
||||
data_3 = data_1 + data_2
|
||||
|
||||
print(data_3)
|
||||
print()
|
||||
print(data_3.isnull())
|
||||
print()
|
||||
print(data_3[data_3.isnull()])
|
||||
print()
|
||||
print(data_3[data_3.notna()])
|
||||
```
|
||||
|
||||
Output
|
||||
|
||||
```python
|
||||
A NaN
|
||||
B NaN
|
||||
C NaN
|
||||
D 1.142000
|
||||
E 1.620137
|
||||
F NaN
|
||||
G NaN
|
||||
H NaN
|
||||
dtype: float64
|
||||
|
||||
A True
|
||||
B True
|
||||
C True
|
||||
D False
|
||||
E False
|
||||
F True
|
||||
G True
|
||||
H True
|
||||
dtype: bool
|
||||
|
||||
A NaN
|
||||
B NaN
|
||||
C NaN
|
||||
F NaN
|
||||
G NaN
|
||||
H NaN
|
||||
dtype: float64
|
||||
|
||||
D 1.142000
|
||||
E 1.620137
|
||||
dtype: float64
|
||||
```
|
||||
|
||||
## [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
|
||||
|
||||
```python
|
||||
|
|
Loading…
Reference in a new issue