mirror of
https://github.com/davrot/pytutorial.git
synced 2025-04-16 12:16:42 +02:00
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
a02de1355e
commit
cd5c813242
1 changed files with 121 additions and 0 deletions
|
@ -210,7 +210,128 @@ CLASS torch.nn.LazyLinear(out_features, bias=True, device=None, dtype=None)
|
|||
|
||||
Let us build the network layer by layer and assume we don't know **number_of_output_channels_flatten1 = 576**. But we know that the input has 1 input channel and 24x24 pixel in the spatial domain.
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
input_number_of_channel: int = 1
|
||||
input_dim_x: int = 24
|
||||
input_dim_y: int = 24
|
||||
|
||||
number_of_output_channels_conv1: int = 32
|
||||
number_of_output_channels_conv2: int = 64
|
||||
number_of_output_channels_flatten1: int
|
||||
number_of_output_channels_full1: int = 1024
|
||||
number_of_output_channels_out: int = 10
|
||||
|
||||
kernel_size_conv1: tuple[int, int] = (5, 5)
|
||||
kernel_size_pool1: tuple[int, int] = (2, 2)
|
||||
kernel_size_conv2: tuple[int, int] = (5, 5)
|
||||
kernel_size_pool2: tuple[int, int] = (2, 2)
|
||||
|
||||
stride_conv1: tuple[int, int] = (1, 1)
|
||||
stride_pool1: tuple[int, int] = (2, 2)
|
||||
stride_conv2: tuple[int, int] = (1, 1)
|
||||
stride_pool2: tuple[int, int] = (2, 2)
|
||||
|
||||
padding_conv1: int = 0
|
||||
padding_pool1: int = 0
|
||||
padding_conv2: int = 0
|
||||
padding_pool2: int = 0
|
||||
|
||||
|
||||
fake_input = torch.zeros((1, input_number_of_channel, input_dim_x, input_dim_y))
|
||||
print(fake_input.shape) # -> torch.Size([1, 1, 24, 24])
|
||||
|
||||
network = torch.nn.Sequential()
|
||||
|
||||
network.append(
|
||||
torch.nn.Conv2d(
|
||||
in_channels=input_number_of_channel,
|
||||
out_channels=number_of_output_channels_conv1,
|
||||
kernel_size=kernel_size_conv1,
|
||||
stride=stride_conv1,
|
||||
padding=padding_conv1,
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
|
||||
|
||||
network.append(torch.nn.ReLU())
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
|
||||
|
||||
network.append(
|
||||
torch.nn.MaxPool2d(
|
||||
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 32, 10, 10])
|
||||
|
||||
|
||||
network.append(
|
||||
torch.nn.Conv2d(
|
||||
in_channels=number_of_output_channels_conv1,
|
||||
out_channels=number_of_output_channels_conv2,
|
||||
kernel_size=kernel_size_conv2,
|
||||
stride=stride_conv2,
|
||||
padding=padding_conv2,
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
|
||||
|
||||
|
||||
network.append(torch.nn.ReLU())
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
|
||||
|
||||
|
||||
network.append(
|
||||
torch.nn.MaxPool2d(
|
||||
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # -> torch.Size([1, 64, 3, 3])
|
||||
|
||||
|
||||
network.append(
|
||||
torch.nn.Flatten(
|
||||
start_dim=1,
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # torch.Size([1, 576])
|
||||
|
||||
number_of_output_channels_flatten1 = fake_input.shape[1]
|
||||
|
||||
network.append(
|
||||
torch.nn.Linear(
|
||||
in_features=number_of_output_channels_flatten1,
|
||||
out_features=number_of_output_channels_full1,
|
||||
bias=True,
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # torch.Size([1, 1024])
|
||||
|
||||
|
||||
network.append(torch.nn.ReLU())
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # torch.Size([1, 1024])
|
||||
|
||||
network.append(
|
||||
torch.nn.Linear(
|
||||
in_features=number_of_output_channels_full1,
|
||||
out_features=number_of_output_channels_out,
|
||||
bias=True,
|
||||
)
|
||||
)
|
||||
fake_input = network[-1](fake_input)
|
||||
print(fake_input.shape) # torch.Size([1, 10])
|
||||
|
||||
|
||||
print(network)
|
||||
```
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue