Create README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-13 20:56:17 +01:00 committed by GitHub
parent 2d3e0d24a3
commit dbb836a93d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -0,0 +1,52 @@
# [Statistics](https://numpy.org/doc/stable/reference/routines.statistics.html#statistics)
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
There are other (more extensive) statistics packages like
* [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html)
* [pingouin](https://pingouin-stats.org/build/html/index.html)
* [statsmodels](https://www.statsmodels.org/stable/index.html)
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [Fisher Exact Test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact)
The [Fisher Exact Test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact) is not part of the numpy package. But we need it in machine learning.
```python
scipy.stats.fisher_exact(table, alternative='two-sided')
```
> Perform a Fisher exact test on a 2x2 contingency table.
## [Order statistics](https://numpy.org/doc/stable/reference/routines.statistics.html#order-statistics)
|||
|---|---|
|[ptp](https://numpy.org/doc/stable/reference/generated/numpy.ptp.html#numpy.ptp)(a[, axis, out, keepdims]) |Range of values (maximum - minimum) along an axis.|
|[percentile](https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile)(a, q[, axis, out, ...]) |Compute the q-th percentile of the data along the specified axis.|
|[nanpercentile](https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html#numpy.nanpercentile)(a, q[, axis, out, ...]) |Compute the qth percentile of the data along the specified axis, while ignoring nan values.|
|[quantile](https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile)(a, q[, axis, out, overwrite_input, ...]) |Compute the q-th quantile of the data along the specified axis.|
|[nanquantile](https://numpy.org/doc/stable/reference/generated/numpy.nanquantile.html#numpy.nanquantile)(a, q[, axis, out, ...]) |Compute the qth quantile of the data along the specified axis, while ignoring nan values.|
## [Averages and variances](https://numpy.org/doc/stable/reference/routines.statistics.html#averages-and-variances)
|||
|---|---|
|[median](https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median)(a[, axis, out, overwrite_input, keepdims])|Compute the median along the specified axis.|
|[average](https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average)(a[, axis, weights, returned, keepdims])|Compute the weighted average along the specified axis.|
|[mean](https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean)(a[, axis, dtype, out, keepdims, where])|Compute the arithmetic mean along the specified axis.|
|[std](https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std)(a[, axis, dtype, out, ddof, keepdims, where])|Compute the standard deviation along the specified axis.|
|[var](https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var)(a[, axis, dtype, out, ddof, keepdims, where])|Compute the variance along the specified axis.|
|[nanmedian](https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian)(a[, axis, out, overwrite_input, ...])|Compute the median along the specified axis, while ignoring NaNs.|
|[nanmean](https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean)(a[, axis, dtype, out, keepdims, where])|Compute the arithmetic mean along the specified axis, ignoring NaNs.|
|[nanstd](https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd)(a[, axis, dtype, out, ddof, ...])|Compute the standard deviation along the specified axis, while ignoring NaNs.|
|[nanvar](https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar)(a[, axis, dtype, out, ddof, ...]) |Compute the variance along the specified axis, while ignoring NaNs.|