From ec25d86cdf3232fa84d096149a100f62ad84459a Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Fri, 5 Jan 2024 14:44:51 +0100 Subject: [PATCH] Update README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- scipy/scipy.stats.fisher_exact/README.md | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/scipy/scipy.stats.fisher_exact/README.md b/scipy/scipy.stats.fisher_exact/README.md index e8f9154..d555542 100644 --- a/scipy/scipy.stats.fisher_exact/README.md +++ b/scipy/scipy.stats.fisher_exact/README.md @@ -95,7 +95,7 @@ import numpy as np import matplotlib.pyplot as plt N: int = 10000 -correct_a: int = N // 2 +correct_b: int = N // 2 values = np.arange(0, N + 1, 100) results_less = np.zeros((values.shape[0])) @@ -104,21 +104,21 @@ results_two_sided = np.zeros((values.shape[0])) for i in range(0, values.shape[0]): - correct_b: int = int(values[i]) + correct_a: int = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less" ) results_less[i] = res.pvalue for i in range(0, values.shape[0]): - correct_b = int(values[i]) + correct_a = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater" ) results_greater[i] = res.pvalue for i in range(0, values.shape[0]): - correct_b = int(values[i]) + correct_a = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="two-sided", @@ -130,7 +130,7 @@ plt.plot(100.0 * values / N, results_two_sided, label="two-sided") plt.plot(100.0 * values / N, results_less, label="less") plt.plot(100.0 * values / N, results_greater, label="greater") -plt.title(f"Compared to a performance A of {100.0 * correct_a /N}%") +plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%") plt.ylabel("p-value") plt.xlabel("Correct [%]") plt.legend() @@ -145,7 +145,7 @@ import numpy as np import matplotlib.pyplot as plt N: int = 10000 -correct_a: int = int(N * 0.99) +correct_b: int = int(N * 0.99) values = np.arange(int(N * 0.98), N + 1) results_less = np.zeros((values.shape[0])) @@ -154,21 +154,21 @@ results_two_sided = np.zeros((values.shape[0])) for i in range(0, values.shape[0]): - correct_b: int = int(values[i]) + correct_a: int = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less" ) results_less[i] = res.pvalue for i in range(0, values.shape[0]): - correct_b = int(values[i]) + correct_a = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater" ) results_greater[i] = res.pvalue for i in range(0, values.shape[0]): - correct_b = int(values[i]) + correct_a = int(values[i]) res = fisher_exact( [[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="two-sided", @@ -180,7 +180,7 @@ plt.plot(100.0 * values / N, results_two_sided, label="two-sided") plt.plot(100.0 * values / N, results_less, label="less") plt.plot(100.0 * values / N, results_greater, label="greater") -plt.title(f"Compared to a performance A of {100.0 * correct_a /N}%") +plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%") plt.ylabel("p-value") plt.xlabel("Correct [%]") plt.legend()