Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
903d4a4b6c
commit
f99563f1c8
1 changed files with 60 additions and 0 deletions
|
@ -17,6 +17,8 @@ Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
rng = np.random.default_rng(1)
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
a_x = rng.normal(1.5, 1.0, size=(1000))
|
||||
|
@ -31,3 +33,61 @@ plt.show()
|
|||
```
|
||||
![image0](image0.png)
|
||||
|
||||
## [sklearn.cluster.KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) and its [fit](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit)
|
||||
|
||||
```python
|
||||
class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='warn', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd')
|
||||
```
|
||||
|
||||
> K-Means clustering.
|
||||
|
||||
|
||||
Attribute:
|
||||
> **cluster_centers_** : ndarray of shape (n_clusters, n_features)
|
||||
> Coordinates of cluster centers. If the algorithm stops before fully converging (see tol and max_iter), these will not be consistent with labels_.
|
||||
|
||||
Method:
|
||||
```python
|
||||
fit(X, y=None, sample_weight=None)
|
||||
```
|
||||
|
||||
> Compute k-means clustering
|
||||
> **X**: {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
> Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it’s not in CSR format.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import KMeans
|
||||
|
||||
rng = np.random.default_rng(1)
|
||||
|
||||
a_x = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
|
||||
a_y = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
|
||||
data_a = np.concatenate((a_x, a_y), axis=1)
|
||||
|
||||
b_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
|
||||
b_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
|
||||
data_b = np.concatenate((b_x, b_y), axis=1)
|
||||
|
||||
data = np.concatenate((data_a, data_b), axis=0)
|
||||
|
||||
kmeans = KMeans(n_clusters=2)
|
||||
kmeans.fit(data)
|
||||
|
||||
|
||||
plt.plot(a_x, a_y, "c.")
|
||||
plt.plot(b_x, b_y, "m.")
|
||||
plt.plot(
|
||||
kmeans.cluster_centers_[0, 0], kmeans.cluster_centers_[0, 1], "k*", markersize=12
|
||||
)
|
||||
plt.plot(
|
||||
kmeans.cluster_centers_[1, 0], kmeans.cluster_centers_[1, 1], "k*", markersize=12
|
||||
)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
![image1](image1.png)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue