From fd16c6f1cea5d64719c2987df5351de1885d9630 Mon Sep 17 00:00:00 2001 From: David Rotermund <54365609+davrot@users.noreply.github.com> Date: Sat, 30 Dec 2023 19:34:01 +0100 Subject: [PATCH] Update README.md Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> --- numpy/piecewise​/README.md | 44 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) diff --git a/numpy/piecewise​/README.md b/numpy/piecewise​/README.md index a678a4f..87f4c18 100644 --- a/numpy/piecewise​/README.md +++ b/numpy/piecewise​/README.md @@ -29,5 +29,49 @@ b = np.piecewise(a, [a < 5, a == 0, a > 5], [-1, 0, 1]) print(a) # -> [ 1 2 3 4 5 6 7 8 9 10] print(b) # -> [-1 -1 -1 -1 0 1 1 1 1 1] ``` +Instead of values we can use functions (Or you can use lambda functions...​): + +```python +import numpy as np + + +def function_a(input): + return input**2 + + +def function_b(input): + return np.sqrt(input) + + +a = np.arange(1, 11) +b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b]) + +print(a) # -> [ 1 2 3 4 5 6 7 8 9 10] +print(b) # -> [ 1 4 9 16 0 2 2 2 3 3] +``` + +**However, the results for the sqrt are strange.** Here we see a case where the automatic dtype switch to float64 failed.​ This is why I overzealously mange / define the dtypes.​ + +```python +import numpy as np + + +def function_a(input): + return input**2 + + +def function_b(input): + return np.sqrt(input) + + +a = np.arange(1, 11).astype(dtype=np.float32) +b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b]) + +print(a) # -> [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] +print(b) # -> [ 1. 4. 9. 16. 0. 2.45 2.65 2.83 3. 3.16] +``` + + +