Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2024-01-02 20:31:05 +01:00 committed by GitHub
parent 09da889f92
commit fd4b1e2a4a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1081,3 +1081,82 @@ tensor([[[[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.]]]],
grad_fn=<ConvolutionBackward0>)
```
## More Class ([torch.nn.Module](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module))
Usually you will see this construct in tutorials:
```python
class MyNetworkClass(torch.nn.Module):
def __init__(self):
super().__init__()
input_number_of_channel: int = 1
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int = 576
number_of_output_channels_full1: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
self.conv1 = torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
)
self.relu1 = torch.nn.ReLU()
self.max_pooling_1 = torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
)
self.conv2 = torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
)
self.relu2 = torch.nn.ReLU()
self.max_pooling_2 = torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
)
self.flatten1 = torch.nn.Flatten(
start_dim=1,
)
self.fully_connected_1 = torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
)
def forward(self, input):
out = self.conv1(input)
out = self.relu1(out)
out = self.max_pooling_1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.max_pooling_2(out)
out = self.flatten1(out)
out = self.fully_connected_1(out)
return out
```