Errors are an option... # Mandatory Tasks ## 2 Basic: ![image0.png](image0.png) Scaled by divison max() for every individual frequency band: ![image1.png](image1.png) ## 3 without preparing the data via /= std: ![image2.png](image2.png) with equalizing the power via /= std (obviously not the best idea in this case): ![image3.png](image3.png) ## 4 Phase Coherence ![image4.png](image4.png) ![image5.png](image5.png) Spectral Coherence ![image6.png](image6.png) ![image7.png](image7.png) ## 5 Phase Coherence ![image10.png](image10.png) ![image11.png](image11.png) Spectral Coherence ![image8.png](image8.png) ![image9.png](image9.png) ## 6 {: .topic-optional} Don't normalize the time series! i.e. don't do something like this: ```python data -= data.mean(axis=1, keepdims=True) data /= data.std(axis=1, keepdims=True) ``` Otherwise you will not classify anything. ![image12.png](image12.png) Scaled by divison max() for every individual frequency band (Bad times happen): ![image13.png](image13.png) ## 7 {: .topic-optional} Don't normalize the time series! i.e. don't do something like this: ```python data -= data.mean(axis=1, keepdims=True) data /= data.std(axis=1, keepdims=True) ``` Otherwise you will not classify anything. ![image14.png](image14.png)