# Linearize the spectral coherence {:.no_toc} ## Top Questions to [David Rotermund](mailto:davrot@uni-bremen.de) Let us assume we have two time series (white in spectrum) $x_1(t)$ and $x_2(t)$. Both are linearly mixed together via a mixing coefficent $\alpha$: $$y(t) = (1- \alpha) x_1(t) + \alpha * x_2(t)$$ Wouldn't it to be nice if the spectral coherence would be $\alpha$? For white times series with the length of infinity this can be achived via the transformation ```python coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0)) ``` see [Attention Selectively Gates Afferent Signal Transmission to Area V4](https://www.jneurosci.org/content/38/14/3441) for details The emphesis lies on infinity and a white spectrum. For shorter time series the results might vary. ![image0.png](image0.png) ```python import numpy as np import matplotlib.pyplot as plt import pywt # type: ignore from tqdm import trange # type: ignore # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) def get_y_ticks( reduction_to_ticks: int, frequency_axis: np.ndarray, round: int ) -> tuple[np.ndarray, np.ndarray]: output_ticks = np.arange( 0, frequency_axis.shape[0], int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), ) if round < 0: output_freq = frequency_axis[output_ticks] else: output_freq = np.round(frequency_axis[output_ticks], round) return output_ticks, output_freq def get_x_ticks( reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int ) -> tuple[np.ndarray, np.ndarray]: time_axis = dt * np.arange(0, number_of_timesteps) output_ticks = np.arange( 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) ) if round < 0: output_time_axis = time_axis[output_ticks] else: output_time_axis = np.round(time_axis[output_ticks], round) return output_ticks, output_time_axis def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray): wave_scales = 1.0 / (frequency_axis * dt) cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64) return cone_of_influence def mask_cone_of_influence( complex_spectrum: np.ndarray, cone_of_influence: np.ndarray, fill_value: float = np.NaN, ) -> np.ndarray: assert complex_spectrum.shape[0] == cone_of_influence.shape[0] for frequency_id in range(0, cone_of_influence.shape[0]): # Front side start_id: int = 0 end_id: int = int( np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1])) ) complex_spectrum[frequency_id, start_id:end_id] = fill_value start_id = np.max( ( complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1, 0, ) ) end_id = complex_spectrum.shape[1] complex_spectrum[frequency_id, start_id:end_id] = fill_value return complex_spectrum def calculate_wavelet_tf_complex_coeffs( data: np.ndarray, number_of_frequences: int = 25, frequency_range_min: float = 15, frequency_range_max: float = 200, dt: float = 1.0 / 1000, ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: assert data.ndim == 1 t: np.ndarray = np.arange(0, data.shape[0]) * dt # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=data, scales=wave_scales, wavelet=mother, sampling_period=dt ) return (complex_spectrum, frequency_axis, t) def calculate_spectral_coherence( n_trials: int, y_a: np.ndarray, y_b: np.ndarray, number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: for trial_id in range(0, n_trials): wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs( data=y_a[..., trial_id], number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs( data=y_b[..., trial_id], number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) cone_of_influence = calculate_cone_of_influence(dt, frequency_axis) wave_data_a = mask_cone_of_influence( complex_spectrum=wave_data_a, cone_of_influence=cone_of_influence, fill_value=np.NaN, ) wave_data_b = mask_cone_of_influence( complex_spectrum=wave_data_b, cone_of_influence=cone_of_influence, fill_value=np.NaN, ) if trial_id == 0: calculation = wave_data_a * np.conj(wave_data_b) norm_data_a = np.abs(wave_data_a) ** 2 norm_data_b = np.abs(wave_data_b) ** 2 else: calculation += wave_data_a * np.conj(wave_data_b) norm_data_a += np.abs(wave_data_a) ** 2 norm_data_b += np.abs(wave_data_b) ** 2 calculation /= float(n_trials) norm_data_a /= float(n_trials) norm_data_b /= float(n_trials) coherence = np.abs(calculation) ** 2 / ((norm_data_a * norm_data_b) + 1e-20) return np.nanmean(coherence, axis=-1), frequency_axis, t # Parameters for the wavelet transform number_of_frequences: int = 3 # frequency bands frequency_range_min: float = 5 # Hz frequency_range_max: float = 200 # Hz dt: float = 1.0 / 1000.0 # Test data -> n_t: int = 10000 n_trials: int = 100 # We select one frequency because all look the same for this white random signal frequency_select: int = 1 rng = np.random.default_rng(1) mother_time_series_a: np.ndarray = rng.random((n_t, n_trials)) mother_time_series_a -= mother_time_series_a.mean(axis=0, keepdims=True) mother_time_series_a /= mother_time_series_a.std(axis=0, keepdims=True) mother_time_series_b: np.ndarray = rng.random((n_t, n_trials)) mother_time_series_b -= mother_time_series_b.mean(axis=0, keepdims=True) mother_time_series_b /= mother_time_series_b.std(axis=0, keepdims=True) # <- Test data alpha_vector: np.ndarray = np.linspace(0.0, 1.0, 11, endpoint=True) for alpha_id in trange(0, alpha_vector.shape[0]): alpha: float = alpha_vector[alpha_id] y_a = mother_time_series_a.copy() y_b = (1.0 - alpha) * mother_time_series_a + alpha * mother_time_series_b y_b -= y_b.mean(axis=0, keepdims=True) y_b /= y_b.std(axis=0, keepdims=True) temp, frequency_axis, t = calculate_spectral_coherence( n_trials=n_trials, y_a=y_a, y_b=y_b, number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) if alpha_id == 0: coherence: np.ndarray = np.zeros((temp.shape[0], alpha_vector.shape[0])) coherence[:, alpha_id] = temp coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0)) plt.plot(alpha_vector, coherence[frequency_select, :], label="unscaled") plt.plot(alpha_vector, coherence_scaled[frequency_select, :], label="scaled") plt.plot([0.5, 0.5], [0, 1], "k--") plt.plot([0, 1], [0.5, 0.5], "k--") plt.ylabel("Spectral Coherence") plt.xlabel("Mixture Coefficent") plt.legend() plt.show() ```