# Numpy -- rfft and spectral power {:.no_toc} ## Goal We want to calculate a well behaved power spectral density from a 1 dimensional time series. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Generation of test data We will generate a sine wave with 10 Hz. ```python import numpy as np time_series_length: int = 1000 dt: float = 1.0 / 1000.0 # time resolution is 1ms sampling_frequency: float = 1.0 / dt frequency_hz: float = 10.0 t: np.ndarray = np.arange(0, time_series_length) * dt y: np.ndarray = np.sin(t * 2 * np.pi * frequency_hz) ``` ![figure 1](figure_1.png) ## Fourier transform with rfft Since we deal with non-complex waveforms (i.e. only real values) we should use rfft. This is faster and uses less memory. ### 1 dimension | | | | ------------- |:-------------:| | [numpy.fft.rfft](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html) | Compute the one-dimensional discrete Fourier Transform for real input. | | [numpy.fft.irfft](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html) | Computes the inverse of [rfft](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft). | | [numpy.fft.rfftfreq](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html) | Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft). | ### 2 dimensions | | | | ------------- |:-------------:| | [numpy.fft.rfft2](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html) | Compute the 2-dimensional FFT of a real array. | | [numpy.fft.irfft2](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html) | Computes the inverse of rfft2. | ### N dimensions | | | | ------------- |:-------------:| | [numpy.fft.rfftn](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html) | Compute the N-dimensional discrete Fourier Transform for real input. | [numpy.fft.irfftn](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html) | Computes the inverse of rfftn. Since we deal with a 1 dimensional time series ```python y_fft: np.ndarray = np.fft.rfft(y) frequency_axis: np.ndarray = np.fft.rfftfreq(y.shape[0]) * sampling_frequency ``` ## Calculating a [normalized](https://de.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html) power spectral density The goal is to produce a power spectral density that is compatible with the [Parseval's identity](https://en.wikipedia.org/wiki/Parseval%27s_identity). Or in other words: the sum over the power spectrum without the zero frequency has the same value as the variance of the time series. ```python y_power: np.ndarray = (1 / (sampling_frequency * y.shape[0])) * np.abs(y_fft) ** 2 y_power[1:-1] *= 2 if frequency_axis[-1] != (sampling_frequency / 2.0): y_power[-1] *= 2 ``` Check of the normalization: ```python print(y_power[1:].sum()/ (time_series_length * dt)) # -> 0.5 print(np.var(y)) # -> 0.5 ``` ![figure 2](figure_2.png) Or zoomed in: ![figure 3](figure_3.png)