# Random numbers the non-legacy way {:.no_toc} ## Goal If you don't see something like **np.random.default_rng()** in your code then you are probably using the old [Legacy Random Generation](https://numpy.org/doc/stable/reference/random/legacy.html#legacy-random-generation). **Don't use the [legacy](https://numpy.org/doc/stable/reference/random/legacy.html) methods** for new source code!!! **numpy.random.random() == old == bad == don't use​** Do it like this: ```python import numpy as np rng = np.random.default_rng() random_values = rng.random(size=(2, 10)) ``` Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## [Random Generator](https://numpy.org/doc/stable/reference/random/generator.html#random-generator) ### Typical usage ```python import numpy as np rng = np.random.default_rng() random_values = rng.random(size=(2, 10)) print(random_values) ``` Output: ``` [[0.81103943 0.1110591 0.42978062 0.47818377 0.91138636 0.47051031 0.08662082 0.1643707 0.48717037 0.17870536] [0.94499902 0.74089677 0.12221184 0.61603001 0.91198789 0.33900609 0.75832792 0.74465679 0.19940125 0.56674595]] ``` ### With seed: ```python import numpy as np rng = np.random.default_rng(seed=23) random_values = rng.random(size=(2, 10)) print(random_values) ``` Output: ``` [[0.69393308 0.64145822 0.12864422 0.11370805 0.65334552 0.85345711 0.20177913 0.21801864 0.71658464 0.47069967] [0.41522193 0.3491478 0.06385375 0.45466617 0.30145328 0.38907675 0.54029782 0.68358969 0.62475238 0.74270445]] ``` ## [Changing the random number generator](https://numpy.org/doc/stable/reference/random/bit_generators/index.html) ### Default ```python import numpy as np rng = np.random.default_rng() print(rng) # -> Generator(PCG64) ``` If you don't like it there are other options: ||| |---|---| |[PCG64](https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html) -- **The default**| A fast generator that can be advanced by an arbitrary amount. See the documentation for advance. PCG-64 has a period of 2^128. See the PCG author’s page for more details about this class of PRNG.​| |[MT19937](https://numpy.org/doc/stable/reference/random/bit_generators/mt19937.html)| The standard Python BitGenerator. Adds a MT19937.jumped function that returns a new generator with state as-if 2^128 draws have been made.| |[PCG64DXSM](https://numpy.org/doc/stable/reference/random/bit_generators/pcg64dxsm.html)| An upgraded version of PCG-64 with better statistical properties in parallel contexts. See Upgrading PCG64 with PCG64DXSM for more information on these improvements.​| |[Philox](https://numpy.org/doc/stable/reference/random/bit_generators/philox.html)|A counter-based generator capable of being advanced an arbitrary number of steps or generating independent streams. See the Random123 page for more details about this class of bit generators.​| |[SFC64](https://numpy.org/doc/stable/reference/random/bit_generators/sfc64.html)|A fast generator based on random invertible mappings. Usually the fastest generator of the four. See the SFC author’s page for (a little) more detail.​| ## [Distributions](https://numpy.org/doc/stable/reference/random/generator.html#distributions) (you will use) The most important ones are in **bold**. If you see a function argument *out*, then you can reuse an existing np array (i.e. [in-place operation](https://numpy.org/doc/stable/reference/random/generator.html#in-place-vs-copy)) as target. | | | | ------------- |:-------------:| |**[integers(low[, high, size, dtype, endpoint])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.integers.html#numpy.random.Generator.integers)**| Return random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high (inclusive). | |**[random([size, dtype, out])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.random.html#numpy.random.Generator.random)** | Return random floats in the half-open interval [0.0, 1.0). | |**[choice(a[, size, replace, p, axis, shuffle])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.choice.html#numpy.random.Generator.choice)** | Generates a random sample from a given array | |[bytes(length)](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.bytes.html#numpy.random.Generator.bytes) | Return random bytes. | |[binomial(n, p[, size])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.binomial.html#numpy.random.Generator.binomial) | Draw samples from a binomial distribution.| |[multinomial(n, pvals[, size])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.multinomial.html#numpy.random.Generator.multinomial) |Draw samples from a multinomial distribution. | |[multivariate_normal(mean, cov[, size, ...])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.multivariate_normal.html#numpy.random.Generator.multivariate_normal) | Draw random samples from a multivariate normal distribution.| |**[normal([loc, scale, size])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.normal.html#numpy.random.Generator.normal)** | Draw random samples from a normal (Gaussian) distribution.| |**[poisson([lam, size])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.poisson.html#numpy.random.Generator.poisson)** | Draw samples from a Poisson distribution.| |[standard_normal([size, dtype, out])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_normal.html#numpy.random.Generator.standard_normal) | Draw samples from a standard Normal distribution (mean=0, stdev=1).| |**[uniform([low, high, size])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.uniform.html#numpy.random.Generator.uniform)** |Draw samples from a uniform distribution. | ### random ```python import numpy as np rng = np.random.default_rng() random_values = rng.random(size=(2, 10)) print(random_values) ``` Output: ``` [[0.75309105 0.15751286 0.49454759 0.18204807 0.88459006 0.78685769 0.68525047 0.4000365 0.45317167 0.62412358] [0.01082224 0.13257961 0.75638974 0.84886965 0.19755022 0.18697649 0.47064409 0.66128207 0.30285691 0.53465021]] ``` ### integers ```python import numpy as np rng = np.random.default_rng() random_values = rng.integers( low=1, high=3, size=(2, 10), dtype=np.uint64, endpoint=True ) print(random_values) ``` Output: ``` [[2 3 3 2 1 3 1 1 2 2] [3 3 2 3 3 2 3 3 1 3]] ``` ### choice ```python import numpy as np rng = np.random.default_rng() p = np.array([1, 2, 3]).astype(np.float64) p /= p.sum() print(f"p: {p}") random_values = rng.choice(a=p.shape[0], p=p, size=(2, 10)) print(random_values) ``` Output: ``` p: [0.16666667 0.33333333 0.5 ] [[0 2 2 1 2 1 2 1 0 1] [2 0 1 2 2 1 0 2 1 2]] ``` ## [Permutations](https://numpy.org/doc/stable/reference/random/generator.html#permutations) | | | | ------------- |:-------------:| |[shuffle(x[, axis])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.shuffle.html#numpy.random.Generator.shuffle)|Modify an array or sequence in-place by shuffling its contents.| |[permutation(x[, axis])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.permutation.html#numpy.random.Generator.permutation)|Randomly permute a sequence, or return a permuted range.| |[permuted(x[, axis, out])](https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.permuted.html#numpy.random.Generator.permuted)|Randomly permute x along axis axis.| |method |copy/in-place | [ axis handling](https://numpy.org/doc/stable/reference/random/generator.html#handling-the-axis-parameter) | | ------------- |:-------------:|:-------------:| |shuffle|in-place|as if 1d| |permutation|copy|as if 1d| |permuted|either (use ‘out’ for in-place)|axis independent| ### shuffle ```python import numpy as np rng = np.random.default_rng() idx_randomized = np.arange(0, 10) rng.shuffle(idx_randomized) print(idx_randomized) ``` Output: ``` [0 2 8 9 5 4 3 6 1 7] ``` ### permutation ```python import numpy as np rng = np.random.default_rng() idx_randomized = rng.permutation(10) print(idx_randomized) ``` Output: ``` [9 4 7 2 6 3 1 8 5 0] ``` ### permuted ```python import numpy as np rng = np.random.default_rng() idx = np.arange(0, 10) idx_randomized = rng.permuted(idx) print(idx_randomized) ``` Output: ``` [4 1 2 8 9 6 0 5 7 3] ``` ## All Distributions You need more distributions? [Go here.](https://numpy.org/doc/stable/reference/random/generator.html#distributions) ## Multithreaded Generation The four core distribution (random, standard_normal, standard_exponential, and standard_gamma) can be used with multi-threading. Please look [here for an example](https://numpy.org/doc/stable/reference/random/multithreading.html#multithreaded-generation).