# Class {:.no_toc} ## The goal Class has a very important job as a core container type in Python. It is really hard to find a good overview how to use them in a good practice manner. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Basics [Class](https://en.wikipedia.org/wiki/Class_(computer_programming)) is the core component of [object-oriented programming](https://en.wikipedia.org/wiki/Object-oriented_programming) (OOP). A class is an [object](https://docs.python.org/3/reference/datamodel.html) that can contain data i.e. class variables (also called fields, attributes or properties) and code, called class methods. Here we will look at the basic [Python class](https://docs.python.org/3/tutorial/classes.html#classes). For data science there is a simplified derivation available called dataclass. ```python class MostSimplestClass: pass ``` ## Instance What is an instance? After defining a class we need to put it into memory. Every instance of a class generated in memory is... well... an instance. Here is an example how we create two instances of a class:  ```python class SimpleClass(object): variable_a: int instance_a = SimpleClass() instance_a.variable_a = 1 instance_b = SimpleClass() instance_b.variable_a = 2 print(instance_a.variable_a) # -> 1 print(instance_b.variable_a) # -> 2 ``` In this example we create an instance with **SimpleClass()** . Reading the content of the ( ) it depends on how you define the method \_\_init\_\_ . By default it doesn't take any arguments from you. ## Variables Code and data are the components a class is made of. Let us look at the data (i.e. variables) first.  **Note: If we want to use a variable (or a method) of the class from within the class we need to use the prefix self.** ### BEST (in my opinion) To make a long story short, you want to do it like this: ```python class MostSimplestClass: a: int b: list def __init__(self): self.a = 0 self.b = [] ``` or use direclty a dataclass when possible! ### BAD: How we DON'T want to do it We have the option to add variables from outside to the class: ```python class MostSimplestClass: pass instance = MostSimplestClass() instance.a: int = 1 print(instance.a) ``` or you can define variables in any of the methods: ```python class MostSimplestClass: def __init__(self): self.a: int = 1 def first_run(self): self.b: int = 2 instance = MostSimplestClass() print(instance.a) # -> 1 instance.first_run() print(instance.b) # -> 2 ``` This is valid and working code. However, you will create a mess. If someone else (or yourself after a few weeks later) needs to look at your source code, there will be tears and hate.   Better, but not good, is to define everything in \_\_init\_\_(): ```python class MostSimplestClass: def __init__(self): self.a: int = 1 self.b: int = 0 def first_run(self): self.b = 2 instance = MostSimplestClass() print(instance.a) # -> 1 instance.first_run() print(instance.b) # -> 2 ``` However, if your \_\_init\_\_ is more complex, you have to search through it for finding the variables.  ### GOOD For a better code quality we should look at the Python dataclass.  ```python class MostSimplestClass: a: int = 1 b: int = 0 def first_run(self): self.b = 2 instance = MostSimplestClass() print(instance.a) # -> 1 instance.first_run() print(instance.b) # -> 2 ``` Now every class variable is defined in the beginning at one place. Easy to find. Easy to look through. We also add the type of the variable here, since we should provide it at the first use of the variable. All question or uncertainty where the first appearance of a variable will be is removed.  However, we need to talk about [mutable objects](https://docs.python.org/3/glossary.html#term-mutable) and [the problem with mutable objects](https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables) and their initialization. ### The danger of initializing mutable variables * [immutable](https://docs.python.org/3/glossary.html#term-immutable) (e.g. numbers, string, tuples) : "An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot be altered. A new object has to be created if a different value has to be stored." * [mutable](https://docs.python.org/3/glossary.html#term-mutable) ([list](https://docs.python.org/3/tutorial/introduction.html#lists), [dictionary](https://docs.python.org/3/tutorial/datastructures.html#dictionaries), [set](https://docs.python.org/3/tutorial/datastructures.html#sets)) : "Mutable objects can change their value but keep their [id()](https://docs.python.org/3/library/functions.html#id)." This is how the problem looks like: ```python class SimpleClass: a: int = 0 b: list = [] instance_a = SimpleClass() instance_b = SimpleClass() instance_a.a = 1 print(instance_a.a) # -> 1 print(instance_b.a) # -> 0 instance_a.b.append("X") print(instance_a.b) # -> ['X'] print(instance_b.b) # -> ['X'] ``` The correct way to handle it is: ```python class SimpleClass: a: int b: list def __init__(self): self.a = 0 self.b = [] instance_a = SimpleClass() instance_b = SimpleClass() instance_a.a = 1 print(instance_a.a) # -> 1 print(instance_b.a) # -> 0 instance_a.b.append("X") print(instance_a.b) # -> ['X'] print(instance_b.b) # -> [] ``` Since you have defined the variables in the beginning of the class and know the type of it (due to the type annotation), you can just copy the list into the constructor \_\_init\_\_ and initialize the variables there.  ### The alternative: dataclass Maybe you want to consider using dataclass where it is possible instead. There you are protected against this error: ```python from dataclasses import dataclass @dataclass class SimpleClass: a: list = [] ``` ```python ValueError: mutable default for field a is not allowed: use default_factory ``` And you get there a nice way to initialize mutable objects safely via default_factory:  ```python from dataclasses import dataclass, field @dataclass class SimpleClass: a: list = field(default_factory=list) instance_a = SimpleClass() instance_b = SimpleClass() instance_a.a.append("X") print(instance_a.a) # -> ['X'] print(instance_b.a) # -> [] ``` ### [@property()](https://docs.python.org/3/library/functions.html#property) {: .topic-optional} This is an optional topic! If a variable starts with one \_ this tells us that it is "private" and we shouldn't touch it directly with our dirty hands from the outside. However, we can use @property to control the communication with the outside world:   ```python class SimpleClass: _a: int = 0 @property def a(self) -> int: return self._a instance = SimpleClass() print(instance.a) instance.a = 1 ``` ```python 0 [...] AttributeError: property 'a' of 'SimpleClass' object has no setter ``` If we want to then we can allow writing and deleting of the variable too: ```python class SimpleClass: _variablename: int = 0 @property def variablename(self) -> int: return self._variablename @variablename.setter def variablename(self, value): self._variablename = value @variablename.deleter def variablename(self): del self._variablename instance = SimpleClass() print(instance.variablename) # -> 0 instance.variablename = 1 print(instance.variablename) # -> 1 ``` ### [\_\_slots\_\_](https://docs.python.org/3/reference/datamodel.html#slots) {: .topic-optional} This is an optional topic! [They say:](https://docs.python.org/3/reference/datamodel.html#slots) * \_\_slots\_\_ allow us to explicitly declare data members (like properties) and deny the creation of [\_\_dict\_\_](https://docs.python.org/3/library/stdtypes.html#object.__dict__) and \_\_weakref\_\_ (unless explicitly declared in \_\_slots\_\_ or available in a parent.) The space saved over using [\_\_dict\_\_](https://docs.python.org/3/library/stdtypes.html#object.__dict__) can be significant. Attribute lookup speed can be significantly improved as well. Let's test if they are really smaller (Note: I will use the memory_profiler module which doesn't work with ipython: pip install memory_profiler ):  With slots: ```python from memory_profiler import profile class SimpleClass: __slots__ = ["variable_a", "variable_b", "variable_c"] variable_a: int variable_b: float variable_c: float def __init__(self, value) -> None: self.variable_a = value self.variable_b = value * 2 self.variable_c = value * 3 @profile def main(): instances = [] for i in range(0, 100000): instances.append(SimpleClass(i)) main() ``` Note: The default values are set in the \_\_init\_\_ and in the section not above. \_\_slots\_\_ doesn't like it if you provide directly default values.  ```python Line # Mem usage Increment Occurrences Line Contents ============================================================= 17 39.2 MiB 39.2 MiB 1 @profile 18 def main(): 19 39.2 MiB 0.0 MiB 1 instances = [] 20 56.0 MiB 13.9 MiB 100001 for i in range(0, 100000): 21 56.0 MiB 2.8 MiB 100000 instances.append(SimpleClass(i)) ``` Without slots: ```python from memory_profiler import profile class SimpleClass: variable_a: int variable_b: float variable_c: float def __init__(self, value) -> None: self.variable_a = value self.variable_b = value * 2 self.variable_c = value * 3 @profile def main(): instances = [] for i in range(0, 100000): instances.append(SimpleClass(i)) main() ``` ```python Line # Mem usage Increment Occurrences Line Contents ============================================================= 17 39.4 MiB 39.4 MiB 1 @profile 18 def main(): 19 39.4 MiB 0.0 MiB 1 instances = [] 20 65.2 MiB 6.2 MiB 100001 for i in range(0, 100000): 21 65.2 MiB 19.6 MiB 100000 instances.append(SimpleClass(i)) ``` Why don't we use it all the time? Well, dynamic maneuvers like this are now denied:   ```python class SimpleClass: __slots__ = ["variable_a", "variable_b", "variable_c"] variable_a: int variable_b: float variable_c: float def __init__(self, value) -> None: self.variable_a = value self.variable_b = value * 2 self.variable_c = value * 3 self.b = 1 # AttributeError: 'SimpleClass' object has no attribute 'b' instances = SimpleClass(1) instances.a = 1 # AttributeError: 'SimpleClass' object has no attribute 'a' ``` ## Methods **Note: If we want to use a method (or a variable) of the class from within the class we need to use the prefix self.** In this example we have defined two methods: **\_\_init\_\_** which is the constructor and **some_method** . Methods are "just" functions defined in a class.  Typically (except you deal with @classmethod or @staticmethod) the first argument of a method is **self**. ```python class SimpleClass: variable_a: int def __init__(self) -> None: self.variable_a = 1 def some_method(self, input: int) -> int: return self.variable_a + input instance = SimpleClass() print(instance.some_method(678)) # -> 679 ``` In case we use a function from the outside of the class, we don't see / provide **self** as an input argument. ```python class SimpleClass: variable_a: int def __init__(self) -> None: self.variable_a = 1 def some_method(self, input: int) -> int: return self.variable_a + input def some_other_method(self, input: int) -> int: return self.some_method(input) instance = SimpleClass() print(instance.some_other_method(678)) # -> 679 ``` ### [Constructor: \_\_init\_\_](https://docs.python.org/3/reference/datamodel.html#object.__init__) When we [create](https://docs.python.org/3/reference/datamodel.html#object.__init__) a new instance, two internal functions of the class are called \_\_new\_\_ and \_\_init\_\_ . \_\_new\_\_ creates it and \_\_init\_\_ customize it. Normally there is no reason to touch \_\_new\_\_. **Note: No return values except None are allowed.** We will otherwise get errors like: "TypeError: \_\_init\_\_() should return None, not 'int'" The first parameter of \_\_init\_\_ is always **self**! ```python class SimpleClass: variable_a: int def __init__(self) -> None: self.variable_a = 1 instance = SimpleClass() ``` We can add more arguments if we want to. Here an example with one additional argument:  ```python class SimpleClass: variable_a: int def __init__(self, value) -> None: self.variable_a = value instance = SimpleClass(1) ``` ### [\_\_str\_\_](https://docs.python.org/3/reference/datamodel.html#object.__str__) and [\_\_repr\_\_](https://docs.python.org/3/reference/datamodel.html#object.__repr__) If we print our class then this happens: ```python class SimpleClass: variable_a: int def __init__(self, value) -> None: self.variable_a = value instance = SimpleClass(1) print(instance) # -> <__main__.SimpleClass object at 0x7fcab0600b80> ``` However, we can add a \_\_str\_\_ function and then we can customize our output: ```python class SimpleClass: variable_a: int def __init__(self, value) -> None: self.variable_a = value def __str__(self) -> str: return f"{self.variable_a}" instance = SimpleClass(1) print(instance) ``` But please be aware that there are more than one putative functions for producing output information:  * [object.\_\_str\_\_(self)](https://docs.python.org/3/reference/datamodel.html#object.__str__) **human friendly** : Called by str(object) and the built-in functions format() and print() to compute the “informal” or nicely printable string representation of an object. The return value must be a string object. * [object.\_\_repr\_\_(self)](https://docs.python.org/3/reference/datamodel.html#object.__repr__)  **unambiguous** : Called by the repr() built-in function to compute the “official” string representation of an object. If at all possible, this should look like a valid Python expression that could be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the form <...some useful description...> should be returned. The return value must be a string object. If a class defines \_\_repr\_\_() but not \_\_str\_\_(), then \_\_repr\_\_() is also used when an “informal” string representation of instances of that class is required. This is typically used for debugging, so it is important that the representation is information-rich and unambiguous. ### [@staticmethod](https://docs.python.org/3/library/functions.html#staticmethod) and [@classmethod](https://docs.python.org/3/library/functions.html#classmethod) {: .topic-optional} This is an optional topic! **Let us be blunt here: I am not sure if you want/ need to know what @staticmethod and @classmethod does.** I was interested in this topic because I saw these decorators and asked myself what they are for.  This is a normal class method:  ```python class SimpleClass: def normal_class_method(self, input: int) -> int: return input instance = SimpleClass() x = instance.normal_class_method(123) print(x) # -> 123 print(instance.normal_class_method) # -> > ``` The normal class method is bound (i.e. connected) to its class.  In the case of a **@staticmethod**, it has no first argument self. And it is not bound to the class. Or in other words: The class is just a container for this @staticmethod or "regular" function.  ```python class SimpleClass: @staticmethod def static_class_method(input: int) -> int: return input instance = SimpleClass() x = instance.static_class_method(123) print(x) # -> 123 print( instance.static_class_method ) # -> ``` In the case of a **@classmethod**, we generate a function that can be called via the class and NOT via the instance:  ```python class SimpleClass: @classmethod def class_class_method(cls, input: int) -> int: return input x = SimpleClass.class_class_method(123) print(x) # -> 123 ``` Note: cls is the replacement for self here. cls gives the class and self the instance to the function.  ## Inherentence Inherentence allows us to add on variables and/or methods to a existing class without copying the whole source code. We inherent from a class if the put it into ( ) in the class definition: ```python class BaseClassA: a: int = 0 class ClassA(BaseClassA): b: int = 1 instance = ClassA() print(instance.a) # -> 0 print(instance.b) # -> 1 ``` Also we can replace functions: ```python class BaseClassA: def print_something(self): print("BaseClassA") class ClassA(BaseClassA): def print_something(self): print("ClassA") instance = ClassA() instance.print_something() # -> ClassA ``` ## Multiple inheritance {: .topic-optional} This is an optional topic! And we inherent from more than one class:  ```python class BaseClassA: def print_something(self): print("BaseClassA") class BaseClassB: def print_something(self): print("BaseClassB") class ClassA(BaseClassA, BaseClassB): pass class ClassB(BaseClassB, BaseClassA): pass instance_a = ClassA() instance_a.print_something() # -> BaseClassA instance_b = ClassB() instance_b.print_something() # -> BaseClassB print(ClassA.__mro__) # -> (, , , ) print(ClassB.__mro__) # -> (, , , ) ``` As you can see: Which version of the functions survives can be complicated. If you want to understand the MRO (Method resolution order) you can look up [C3 linearization](https://en.wikipedia.org/wiki/C3_linearization). Personally, I would try to avoid this unclear situations everywhere.  We can define more precisely and prevent surprises:  ```python class BaseClassA: a = 1 def print_something(self): print(f"BaseClassA {self.a}") class BaseClassB: a = 2 def print_something(self): print(f"BaseClassB {self.a}") class ClassA(BaseClassA, BaseClassB): a = 3 def print_something(self): BaseClassB.print_something(self) instance_a = ClassA() instance_a.print_something() # -> BaseClassB 3 ``` If we only inherent from one class we can use super(). ## [super()](https://docs.python.org/3/library/functions.html#super) * "There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels the use of super in other programming languages." * "The second use case is to support cooperative multiple inheritance in a dynamic execution environment." Or in other words: super() will call the version of a function that is next in line in the MRO.  As a simple example lets look at BaseClassA -> BaseClassB -> BaseClassC:  ```python class BaseClassA: a = 1 def print_something(self): print(f"BaseClassA {self.a}") class BaseClassB(BaseClassA): a = 2 def print_something(self): super().print_something() print(f"BaseClassB {self.a}") class BaseClassC(BaseClassB): a = 3 def print_something(self): super().print_something() print(f"BaseClassC {self.a}") instance_a = BaseClassC() instance_a.print_something() ``` Output ```python BaseClassA 3 BaseClassB 3 BaseClassC 3 ``` Note that for BaseClassA there is no super() because there is no higher level to call. But in the case of \_\_init\_\_ we can do that: ```python class BaseClassA: a = 1 def __init__(self): super().__init__() print(f"BaseClassA {self.a}") class BaseClassB(BaseClassA): a = 2 def __init__(self): super().__init__() print(f"BaseClassB {self.a}") class BaseClassC(BaseClassB): a = 3 def __init__(self): super().__init__() print(f"BaseClassC {self.a}") instance_a = BaseClassC() ``` Output ```python BaseClassA 3 BaseClassB 3 BaseClassC 3 ``` Why can we do that? Well, **class BaseClassA**: is just a shorthand for **class BaseClassA(object)**: [Object](https://docs.python.org/3/reference/datamodel.html#basic-customization) already provides us with some basic functionality like \_\_init\_\_ which is contained in all user custom classes (if not removed).  ## [ABC (Abstract Base Classes)](https://docs.python.org/3/library/abc.html#module-abc) and [@abstractmethod](https://docs.python.org/3/library/abc.html#abc.abstractmethod) {: .topic-optional} This is an optional topic! Maybe you need a placeholder for a future function but also want to make REALLY sure that the new class defines the function. For such a case you can use the base class ABC with @abstractmethod Deliberately not working: ```python from abc import ABC, abstractmethod class BaseClassA(ABC): @abstractmethod def function_a(self): pass instance = BaseClassA() # -> TypeError: Can't instantiate abstract class BaseClassA with abstract method function_a ``` Also deliberately not working: ```python from abc import ABC, abstractmethod class BaseClassA(ABC): @abstractmethod def function_a(self): pass class BaseClassB(BaseClassA): pass instance = BaseClassB() # TypeError: Can't instantiate abstract class BaseClassB with abstract method function_a ``` This is working: ```python from abc import ABC, abstractmethod class BaseClassA(ABC): @abstractmethod def function_a(self): pass class BaseClassB(BaseClassA): def function_a(self): pass instance = BaseClassB() ``` ## Compositions -- Against the curse of dimensionality {: .topic-optional} This is an optional topic! While inherentence is a nice tool, it leads very fast to an explosion of specialized classes. An alternative is the composition approach. Here a base class for a functionality is prepared with the required abstract placeholders. This base class is then inherented by classes that provide the required spectrum of functionality. Then a composition class is designed. During instancing the composition class we plug in the functionality we want.  Hard to explain in words. Easy to show in an example:  ```python from abc import ABC, abstractmethod class BaseFunction(ABC): @abstractmethod def add_something(self, input: int) -> int: pass class AddOne(BaseFunction): def add_something(self, input: int) -> int: return input + 1 class AddTwo(BaseFunction): def add_something(self, input: int) -> int: return input + 2 class CompositionClass: method_one: BaseFunction method_two: BaseFunction def __init__(self, method_one: BaseFunction, method_two: BaseFunction) -> None: super().__init__() self.method_one = method_one self.method_two = method_two def processing(self, input: int) -> int: return self.method_two.add_something(self.method_one.add_something(input)) variant_a = CompositionClass(method_one=AddOne(), method_two=AddOne()) print(variant_a.processing(0)) # -> 2 variant_b = CompositionClass(method_one=AddTwo(), method_two=AddTwo()) print(variant_b.processing(0)) # -> 4 variant_c = CompositionClass(method_one=AddOne(), method_two=AddTwo()) print(variant_c.processing(0)) # -> 3 variant_d = CompositionClass(method_one=AddTwo(), method_two=AddOne()) print(variant_d.processing(0)) # -> 3 ``` ## [functools](https://docs.python.org/3/library/functools.html) ### [@cached_property](https://docs.python.org/3/library/functools.html#functools.cached_property) (not recommended) {: .topic-optional} This is an optional topic! I am not really a fan of this one. It allows you to cache calculations. However, this works only if the data behind the calculation doesn't change in any way, shape or form. If you change it then result is NOT updated.  ```python from functools import cached_property class SimpleClass: _a: int _b: int def __init__(self): self._a = 1 self._b = 2 @cached_property def value_x(self): return self._a + self._b instance = SimpleClass() print(instance.value_x) # -> 3 instance._a = 7 print(instance.value_x) # -> 3 ``` ### [partialmethod](https://docs.python.org/3/library/functools.html#functools.partialmethod) {: .topic-optional} This is an optional topic! Partialmethod allows you to create an alias for an already defined function but with partially pre-defined arguments: ```python from functools import partialmethod class SimpleClass: def function_a(self, input_1: int, input_2: int) -> int: return input_1 + input_2 add_one = partialmethod(function_a, 1) instance = SimpleClass() print(instance.function_a(1, 1)) # -> 2 print(instance.add_one(1)) # -> 2 ``` ## [Iterators](https://wiki.python.org/moin/Iterator) Iterators are used in e.g. for loops. Iterators are classes that provide the methods [\_\_iter\_\_](https://docs.python.org/3/reference/datamodel.html#object.__iter__) and [\_\_next\_\_](https://docs.python.org/3/library/stdtypes.html#iterator.__next__) . \_\_iter\_\_ just returns itself. \_\_next\_\_ does something. If \_\_next\_\_ can not do anything more (e.g. because there is not more data) then it raises the exception StopIteration. ```python class IterExample: a_max: int a: int def __init__(self): self.a_max = 10 self.a = 0 def __iter__(self): return self def __next__(self): if self.a < self.a_max: self.a += 1 else: raise StopIteration return self.a**2 instance = IterExample() for i in instance: print(i) ``` We can also use the iterator class manually via [next()](https://docs.python.org/3/library/functions.html#next): ```python class IterExample: a_max: int a: int def __init__(self): self.a_max = 10 self.a = 0 def __iter__(self): return self def __next__(self): if self.a < self.a_max: self.a += 1 else: raise StopIteration return self.a**2 instance = IterExample() print(next(instance)) # -> 1 print(next(instance)) # -> 4 print(next(instance)) # -> 9 print(next(instance)) # -> 16 print(next(instance)) # -> 25 print(next(instance)) # -> 36 print(next(instance)) # -> 49 print(next(instance)) # -> 64 print(next(instance)) # -> 81 print(next(instance)) # -> 100 print(next(instance)) # -> StopIteration: ``` ## [Generators](https://docs.python.org/3/glossary.html#term-generator) "A function which returns a [generator iterator](https://docs.python.org/3/glossary.html#term-generator-iterator). It looks like a normal function except that it contains [yield](https://docs.python.org/3/reference/simple_stmts.html#yield) expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the [next()](https://docs.python.org/3/library/functions.html#next) function." Manually: ```python def generator(start_value: int, end_value: int): for i in range(start_value, end_value): yield i**2 i = iter(generator(1, 11)) print(next(i)) # -> 1 print(next(i)) # -> 4 print(next(i)) # -> 9 print(next(i)) # -> 16 print(next(i)) # -> 25 print(next(i)) # -> 36 print(next(i)) # -> 49 print(next(i)) # -> 64 print(next(i)) # -> 81 print(next(i)) # -> 100 print(next(i)) # -> StopIteration: ``` Via for-loop: ```python def generator(start_value: int, end_value: int): for i in range(start_value, end_value): yield i**2 for i in generator(1, 11): print(i) ``` Output: ```python 1 4 9 16 25 36 49 64 81 100 ``` ## [dir](https://docs.python.org/3/library/functions.html#dir) {: .topic-optional} This is an optional topic! "Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list of valid attributes for that object." ```python class BaseClassA: a: int def __init__(self): super().__init__() self.a = 1 def function_a(self): pass def function_b(self): pass print(dir(BaseClassA)) ``` Output ```python ['__annotations__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'function_a', 'function_b'] ``` If you look carefully through the list you will notice that the variable a is not there. The reason for this is that it doesn't exist until the instance is created:   ```python class BaseClassA: __slots__ = ["a"] a: int def __init__(self): super().__init__() self.a = 1 def function_a(self): pass def function_b(self): pass instance = BaseClassA() print(dir(instance)) ``` Output Even with \_\_slots\_\_ use, now the variable a is included in the list:  ```python ['__annotations__', '__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', 'a', 'function_a', 'function_b'] ``` ## References * [Classes](https://docs.python.org/3/tutorial/classes.html) * [Objects: Special method names](https://docs.python.org/3/reference/datamodel.html#special-method-names)