# [PyWavelets](https://pywavelets.readthedocs.io/en/latest/) : Wavelet Transforms in Python {:.no_toc} ## The goal How do we do wavelet transforms under Python? Questions to [David Rotermund](mailto:davrot@uni-bremen.de) You might want to read: [A Practical Guide to Wavelet Analysis](https://paos.colorado.edu/research/wavelets/) -> [PDF](https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf) ```shell pip install PyWavelets ``` ## Which [continuous mother wavelets](https://pywavelets.readthedocs.io/en/latest/ref/cwt.html#continuous-wavelet-families) are available? ```python import pywt wavelet_list = pywt.wavelist(kind="continuous") print(wavelet_list) ``` ```python ['cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', 'cgau8', 'cmor', 'fbsp', 'gaus1', 'gaus2', 'gaus3', 'gaus4', 'gaus5', 'gaus6', 'gaus7', 'gaus8', 'mexh', 'morl', 'shan'] ``` * The mexican hat wavelet "mexh" * The Morlet wavelet "morl" * The complex Morlet wavelet ("cmorB-C" with floating point values B, C) * The Gaussian wavelets ("gausP" where P is an integer between 1 and and 8) * The complex Gaussian wavelets ("cgauP" where P is an integer between 1 and 8) * The Shannon wavelets ("shanB-C" with floating point values B and C) * The frequency B-spline wavelets ("fpspM-B-C" with integer M and floating point B, C) see [Choosing the scales for cwt](https://pywavelets.readthedocs.io/en/latest/ref/cwt.html#choosing-the-scales-for-cwt) ## Visualizing wavelets ```python import numpy as np import matplotlib.pyplot as plt import pywt wavelet_name: str = "cmor1.5-1.0" # Invoking the complex morlet wavelet object wav = pywt.ContinuousWavelet(wavelet_name) # Integrate psi wavelet function from -Inf to x # using the rectangle integration method. int_psi, x = pywt.integrate_wavelet(wav, precision=10) int_psi /= np.abs(int_psi).max() wav_filter: np.ndarray = int_psi[::-1] nt: int = len(wav_filter) t: np.ndarray = np.linspace(-nt // 2, nt // 2, nt) plt.plot(t, wav_filter.real, label="real") plt.plot(t, wav_filter.imag, label="imaginary") plt.ylim([-1, 1]) plt.legend(loc="upper left") plt.xlabel("time (samples)") plt.title(f"filter {wavelet_name}") ``` ![figure 1](image1.png) ## Building a frequency scale for the complex Morlet wavelet We don't want to waste computations power. Thus we want to put the frequency band for higher frequencies further away than for smaller frequencies. Thus we will use a $2^{N \cdot Scale}$ scale. ```python import numpy as np import matplotlib.pyplot as plt import pywt number_of_frequences: int = 20 # Number of frequency bands frequency_range: tuple[float, float] = (2, 200) # Hz dt: float = 1 / 1000 # sec frequency_range_np: np.ndarray = np.array(frequency_range) s_spacing = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_np.max() / frequency_range_np.min() ) scale = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_np = frequency_range_np.min() * np.flip(scale) plt.plot(frequency_axis_np, "--*", label="Frequency we want") wave_scales = 1.0 / (frequency_axis_np * dt) frequency_axis = pywt.scale2frequency("cmor1.5-1.0", wave_scales) / dt plt.plot(frequency_axis, ".", label="Frequency we got") plt.legend() plt.xlim([0, number_of_frequences - 1]) plt.xticks(np.arange(0, number_of_frequences)) plt.ylabel("Frequency [Hz]") plt.xlabel("Frequency band") plt.show() ``` ![figure 2](image2.png) ## Cone of influence for the complex Morlet wavelet At the edges of the time series, the wavelet is dangling out of the allowed time axis. Thus these values are nonsense and need to be removed. The size of the wavelet is connected to its scale, hence for different scales the bad zone has different sizes. For the complex Morlet wavelet the number of samples are defined by the equation $\sqrt(2) \cdot scale$ ( [A Practical Guide to Wavelet Analysis](https://paos.colorado.edu/research/wavelets/) -> [PDF](https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf) ). Which looks like this:  ```python cone_of_influence = np.ceil(np.sqrt(2) * wave_scales).astype(dtype=np.int64) print(cone_of_influence) plt.plot(frequency_axis, cone_of_influence, "*") plt.ylabel("Number of invalid data samples") plt.xlabel("Frequency [Hz]") plt.show() ``` ```python [ 8 10 12 15 19 24 31 39 50 63 80 102 130 166 211 269 342 436 555 708] ``` ![figure 3](image3.png) ## Analyzing a test signal  First we need a test signal. We will use a 50Hz sinus for that ```python import numpy as np import matplotlib.pyplot as plt f_test: float = 50 # Hz number_of_test_samples: int = 1000 dt: float = 1.0 / 1000 # sec t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) plt.plot(t_test, test_data) plt.xlabel("time [sec]") plt.ylabel("time series") ``` ![figure 4](image4.png) ```python import numpy as np import matplotlib.pyplot as plt import pywt # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) f_test: float = 50 # Hz number_of_test_samples: int = 1000 # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") # Parameters for the wavelet transform number_of_frequences: int = 25 # frequency bands frequency_range_min: float = 15 # Hz frequency_range_max: float = 200 # Hz dt: float = 1.0 / 1000 # sec t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=test_data, scales=wave_scales, wavelet=mother, sampling_period=dt ) plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") plt.colorbar() plt.yticks(np.arange(0, frequency_axis.shape[0]), frequency_axis) plt.xticks(np.arange(0, t_test.shape[0]), t_test) plt.xlabel("Time [sec]") plt.ylabel("Frequency [Hz]") plt.show() ``` ![figure 5](image5.png) **Done** ?!?! ### Fixing the problems -- the axis of the plot The axis look horrible! Let us fix that. ```python import numpy as np import matplotlib.pyplot as plt import pywt # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) def get_y_ticks( reduction_to_ticks: int, frequency_axis: np.ndarray, round: int ) -> tuple[np.ndarray, np.ndarray]: output_ticks = np.arange( 0, frequency_axis.shape[0], int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), ) if round < 0: output_freq = frequency_axis[output_ticks] else: output_freq = np.round(frequency_axis[output_ticks], round) return output_ticks, output_freq def get_x_ticks( reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int ) -> tuple[np.ndarray, np.ndarray]: time_axis = dt * np.arange(0, number_of_timesteps) output_ticks = np.arange( 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) ) if round < 0: output_time_axis = time_axis[output_ticks] else: output_time_axis = np.round(time_axis[output_ticks], round) return output_ticks, output_time_axis f_test: float = 50 # Hz number_of_test_samples: int = 1000 # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") # Parameters for the wavelet transform number_of_frequences: int = 25 # frequency bands frequency_range_min: float = 15 # Hz frequency_range_max: float = 200 # Hz dt: float = 1.0 / 1000 # sec t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=test_data, scales=wave_scales, wavelet=mother, sampling_period=dt ) plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") plt.colorbar() y_ticks, y_labels = get_y_ticks( reduction_to_ticks=10, frequency_axis=frequency_axis, round=1 ) x_ticks, x_labels = get_x_ticks( reduction_to_ticks=10, dt=dt, number_of_timesteps=complex_spectrum.shape[1], round=2 ) plt.yticks(y_ticks, y_labels) plt.xticks(x_ticks, x_labels) plt.xlabel("Time [sec]") plt.ylabel("Frequency [Hz]") plt.show() ``` ![figure 6](image6.png) This looks already better... ### Fixing the problems -- Cone of influence If the look at the edges of the 2d plot, we see that the power tapers of. There regions are invalid results because part of the wavelet hangs outside of the time series. The larger the frequency, the larger the region. ```python import numpy as np import matplotlib.pyplot as plt import pywt # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray): wave_scales = 1.0 / (frequency_axis * dt) cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64) return cone_of_influence def get_y_ticks( reduction_to_ticks: int, frequency_axis: np.ndarray, round: int ) -> tuple[np.ndarray, np.ndarray]: output_ticks = np.arange( 0, frequency_axis.shape[0], int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), ) if round < 0: output_freq = frequency_axis[output_ticks] else: output_freq = np.round(frequency_axis[output_ticks], round) return output_ticks, output_freq def get_x_ticks( reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int ) -> tuple[np.ndarray, np.ndarray]: time_axis = dt * np.arange(0, number_of_timesteps) output_ticks = np.arange( 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) ) if round < 0: output_time_axis = time_axis[output_ticks] else: output_time_axis = np.round(time_axis[output_ticks], round) return output_ticks, output_time_axis f_test: float = 50 # Hz number_of_test_samples: int = 1000 # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") # Parameters for the wavelet transform number_of_frequences: int = 25 # frequency bands frequency_range_min: float = 15 # Hz frequency_range_max: float = 200 # Hz dt: float = 1.0 / 1000 # sec t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=test_data, scales=wave_scales, wavelet=mother, sampling_period=dt ) cone_of_influence = calculate_cone_of_influence(dt, frequency_axis) plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") plt.plot(cone_of_influence, np.arange(0, cone_of_influence.shape[0]), "g") plt.plot( complex_spectrum.shape[1] - 1 - cone_of_influence, np.arange(0, cone_of_influence.shape[0]), "g", ) plt.colorbar() y_ticks, y_labels = get_y_ticks( reduction_to_ticks=10, frequency_axis=frequency_axis, round=1 ) x_ticks, x_labels = get_x_ticks( reduction_to_ticks=10, dt=dt, number_of_timesteps=complex_spectrum.shape[1], round=2 ) plt.yticks(y_ticks, y_labels) plt.xticks(x_ticks, x_labels) plt.xlabel("Time [sec]") plt.ylabel("Frequency [Hz]") plt.show() ``` ![figure 7](image7.png) ### Fixing the problems -- Cone of influence masked Instead of marking the invalid regions in the plot, we want to continue to analyze the data later but without the invalide data. Thus we can mask that part of the tranformations with NaNs. ```python import numpy as np import matplotlib.pyplot as plt import pywt # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray): wave_scales = 1.0 / (frequency_axis * dt) cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64) return cone_of_influence def get_y_ticks( reduction_to_ticks: int, frequency_axis: np.ndarray, round: int ) -> tuple[np.ndarray, np.ndarray]: output_ticks = np.arange( 0, frequency_axis.shape[0], int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), ) if round < 0: output_freq = frequency_axis[output_ticks] else: output_freq = np.round(frequency_axis[output_ticks], round) return output_ticks, output_freq def get_x_ticks( reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int ) -> tuple[np.ndarray, np.ndarray]: time_axis = dt * np.arange(0, number_of_timesteps) output_ticks = np.arange( 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) ) if round < 0: output_time_axis = time_axis[output_ticks] else: output_time_axis = np.round(time_axis[output_ticks], round) return output_ticks, output_time_axis def mask_cone_of_influence( complex_spectrum: np.ndarray, cone_of_influence: np.ndarray, fill_value: float = np.NaN, ) -> np.ndarray: assert complex_spectrum.shape[0] == cone_of_influence.shape[0] for frequency_id in range(0, cone_of_influence.shape[0]): # Front side start_id: int = 0 end_id: int = int( np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1])) ) complex_spectrum[frequency_id, start_id:end_id] = fill_value start_id = np.max( ( complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1, 0, ) ) end_id = complex_spectrum.shape[1] complex_spectrum[frequency_id, start_id:end_id] = fill_value return complex_spectrum f_test: float = 50 # Hz number_of_test_samples: int = 1000 # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") # Parameters for the wavelet transform number_of_frequences: int = 25 # frequency bands frequency_range_min: float = 15 # Hz frequency_range_max: float = 200 # Hz dt: float = 1.0 / 1000 # sec t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test) wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=test_data, scales=wave_scales, wavelet=mother, sampling_period=dt ) cone_of_influence = calculate_cone_of_influence(dt, frequency_axis) complex_spectrum = mask_cone_of_influence( complex_spectrum=complex_spectrum, cone_of_influence=cone_of_influence, fill_value=np.NaN, ) plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") plt.colorbar() y_ticks, y_labels = get_y_ticks( reduction_to_ticks=10, frequency_axis=frequency_axis, round=1 ) x_ticks, x_labels = get_x_ticks( reduction_to_ticks=10, dt=dt, number_of_timesteps=complex_spectrum.shape[1], round=2 ) plt.yticks(y_ticks, y_labels) plt.xticks(x_ticks, x_labels) plt.xlabel("Time [sec]") plt.ylabel("Frequency [Hz]") plt.show() ``` ![figure 8](image8.png)