# FastICA {:.no_toc} ## The goal Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Test data We rotate the blue dots with ​a non-orthogonal rotation matrix into the red dots.​ ```python import numpy as np import matplotlib.pyplot as plt rng = np.random.default_rng(1) a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 data_a = np.concatenate((a_x, a_y), axis=1) b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] data_b = np.concatenate((b_x, b_y), axis=1) data = np.concatenate((data_a, data_b), axis=0) angle_x = -0.3 angle_y = 0.3 roation_matrix = np.array( [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]] ) data_r = data @ roation_matrix plt.plot(data[:, 0], data[:, 1], "b.") plt.plot(data_r[:, 0], data_r[:, 1], "r.") plt.show() ``` ![image0](image0.png) ## Train and use [FastICA​](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA) ```python class sklearn.decomposition.FastICA(n_components=None, *, algorithm='parallel', whiten='unit-variance', fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, whiten_solver='svd', random_state=None) ``` > FastICA: a fast algorithm for Independent Component Analysis. > > The implementation is based on [1](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#r44c805292efc-1). ```python fit(X, y=None) ``` > Fit the model to X. > > **X** : array-like of shape (n_samples, n_features) > > Training data, where n_samples is the number of samples and n_features is the number of features. ```python transform(X, copy=True) ``` > Recover the sources from X (apply the unmixing matrix). > > **X** : array-like of shape (n_samples, n_features) > > Data to transform, where n_samples is the number of samples and n_features is the number of features. ```python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import FastICA rng = np.random.default_rng(1) a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 data_a = np.concatenate((a_x, a_y), axis=1) b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] data_b = np.concatenate((b_x, b_y), axis=1) data = np.concatenate((data_a, data_b), axis=0) angle_x = -0.3 angle_y = 0.3 roation_matrix = np.array( [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]] ) data_r = data @ roation_matrix # Train ica = FastICA(n_components=2) ica.fit(data_r) # Use transformed_data = ica.transform(data_r) plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.") plt.show() ``` ![image1](image1.png) ## Use FastICA to transform the un-rotated data ```python inverse_transform(X, copy=True) ``` > Transform the sources back to the mixed data (apply mixing matrix). > **X** : array-like of shape (n_samples, n_components) > > Sources, where n_samples is the number of samples and n_components is the number of components. ```python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import FastICA rng = np.random.default_rng(1) a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 data_a = np.concatenate((a_x, a_y), axis=1) b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] data_b = np.concatenate((b_x, b_y), axis=1) data = np.concatenate((data_a, data_b), axis=0) angle_x = -0.3 angle_y = 0.3 roation_matrix = np.array( [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]] ) data_r = data @ roation_matrix # Train ica = FastICA(n_components=2) ica.fit(data_r) # Use transformed_data = ica.inverse_transform(data) plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.") plt.show() ``` ![image2](image2.png) ## Inspect the extracted coordinate system​ > **components_** : ndarray of shape (n_components, n_features) > > The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_) when whiten is True. **Be aware that the sign of any axis can switch !!!​** Like it happend in this example: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import FastICA rng = np.random.default_rng(1) a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 data_a = np.concatenate((a_x, a_y), axis=1) b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3 b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] data_b = np.concatenate((b_x, b_y), axis=1) data = np.concatenate((data_a, data_b), axis=0) angle_x = -0.3 angle_y = 0.3 roation_matrix = np.array( [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]] ) data_r = data @ roation_matrix # Train ica = FastICA(n_components=2) ica.fit(data_r) plt.plot([-ica.components_.max(), ica.components_.max()], [0, 0], "k") plt.plot([0, 0], [-ica.components_.max(), ica.components_.max()], "k") plt.plot( [-ica.components_[0, 0], ica.components_[0, 0]], [-ica.components_[0, 1], ica.components_[0, 1]], "m", ) plt.plot( [-ica.components_[1, 0], ica.components_[1, 0]], [-ica.components_[1, 1], ica.components_[1, 1]], "c", ) plt.show() ``` ![image3](image3.png) ## Fast ICA Methods ||| |---|---| |[fit](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit)(X[, y])|Fit the model to X.| |[fit_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit_transform)(X[, y])|Fit the model and recover the sources from X.| |[get_feature_names_out](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_feature_names_out)([input_features])|Get output feature names for transformation.| |[get_metadata_routing](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_metadata_routing)()|Get metadata routing of this object.| |[get_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_params)([deep])|Get parameters for this estimator.| |[inverse_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.inverse_transform)(X[, copy])|Transform the sources back to the mixed data (apply mixing matrix).| |[set_inverse_transform_request](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_inverse_transform_request)(*[, copy])|Request metadata passed to the inverse_transform method.| |[set_output](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_output)(*[, transform])|Set output container.| |[set_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_params)(**params)|Set the parameters of this estimator.| |[set_transform_request](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_transform_request)(*[, copy])|Request metadata passed to the transform method.| |[transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.transform)(X[, copy])|Recover the sources from X (apply the unmixing matrix).| ## Fast ICA Attributes > **components_** : ndarray of shape (n_components, n_features) > > The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_) when whiten is True. > **mixing_** : ndarray of shape (n_features, n_components) > > The pseudo-inverse of components_. It is the linear operator that maps independent sources to the data. > **mean_** : ndarray of shape(n_features,) > > The mean over features. Only set if self.whiten is True. > **n_features_in_** : int > > Number of features seen during fit. > **feature_names_in_** : ndarray of shape (n_features_in_,) > > Names of features seen during fit. Defined only when X has feature names that are all strings. > **n_iter_** : int > > If the algorithm is “deflation”, n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge. > **whitening_** : ndarray of shape (n_components, n_features) > > Only set if whiten is ‘True’. This is the pre-whitening matrix that projects data onto the first n_components principal components.