# Overview {:.no_toc} ## The goal [scikit-learn](https://scikit-learn.org/stable/index.html) is a machine learning tool kit for data analysis. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ```shell pip install scikit-learn ``` > * Simple and efficient tools for predictive data analysis > * Accessible to everybody, and reusable in various contexts > * Built on NumPy, SciPy, and matplotlib **I will keep it short and I will mark the most relevant tools in bold** ## [sklearn.base: Base classes and utility functions](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base) ## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration) ||| |---|---| |calibration.CalibratedClassifierCV([...])|Probability calibration with isotonic regression or logistic regression.| |calibration.calibration_curve(y_true, y_prob, *)|Compute true and predicted probabilities for a calibration curve.| ## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster) ### Classes ||| |---|---| |cluster.AffinityPropagation(*[, damping, ...])|Perform Affinity Propagation Clustering of data.| |cluster.AgglomerativeClustering([...])|Agglomerative Clustering.| |cluster.Birch(*[, threshold, ...])|Implements the BIRCH clustering algorithm.| |cluster.DBSCAN([eps, min_samples, metric, ...])|Perform DBSCAN clustering from vector array or distance matrix.| |cluster.HDBSCAN([min_cluster_size, ...])|Cluster data using hierarchical density-based clustering.| |cluster.FeatureAgglomeration([n_clusters, ...])|Agglomerate features.| |**[cluster.KMeans([n_clusters, init, n_init, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans)**|**K-Means clustering.**| |cluster.BisectingKMeans([n_clusters, init, ...])|Bisecting K-Means clustering.| |**[cluster.MiniBatchKMeans([n_clusters, init, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans)**|**Mini-Batch K-Means clustering.**| |cluster.MeanShift(*[, bandwidth, seeds, ...])|Mean shift clustering using a flat kernel.| |cluster.OPTICS(*[, min_samples, max_eps, ...])|Estimate clustering structure from vector array.| |cluster.SpectralClustering([n_clusters, ...])|Apply clustering to a projection of the normalized Laplacian.| |cluster.SpectralBiclustering([n_clusters, ...])|Spectral biclustering (Kluger, 2003).| |cluster.SpectralCoclustering([n_clusters, ...])|Spectral Co-Clustering algorithm (Dhillon, 2001).| ### Functions ||| |---|---| |cluster.affinity_propagation(S, *[, ...])|Perform Affinity Propagation Clustering of data.| |cluster.cluster_optics_dbscan(*, ...)|Perform DBSCAN extraction for an arbitrary epsilon.| |cluster.cluster_optics_xi(*, reachability, ...)|Automatically extract clusters according to the Xi-steep method.| |cluster.compute_optics_graph(X, *, ...)|Compute the OPTICS reachability graph.| |cluster.dbscan(X[, eps, min_samples, ...])|Perform DBSCAN clustering from vector array or distance matrix.| |cluster.estimate_bandwidth(X, *[, quantile, ...])|Estimate the bandwidth to use with the mean-shift algorithm.| |cluster.k_means(X, n_clusters, *[, ...])|Perform K-means clustering algorithm.| |cluster.kmeans_plusplus(X, n_clusters, *[, ...])|Init n_clusters seeds according to k-means++.| |cluster.mean_shift(X, *[, bandwidth, seeds, ...])|Perform mean shift clustering of data using a flat kernel.| |cluster.spectral_clustering(affinity, *[, ...])|Apply clustering to a projection of the normalized Laplacian.| |cluster.ward_tree(X, *[, connectivity, ...])|Ward clustering based on a Feature matrix.| ## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose) ||| |---|---| |compose.ColumnTransformer(transformers, *[, ...])|Applies transformers to columns of an array or pandas DataFrame.| |compose.TransformedTargetRegressor([...])|Meta-estimator to regress on a transformed target.| |compose.make_column_transformer(*transformers)|Construct a ColumnTransformer from the given transformers.| |compose.make_column_selector([pattern, ...])|Create a callable to select columns to be used with ColumnTransformer.| ## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance) ||| |---|---| |covariance.EmpiricalCovariance(*[, ...])|Maximum likelihood covariance estimator.| |covariance.EllipticEnvelope(*[, ...])|An object for detecting outliers in a Gaussian distributed dataset.| |covariance.GraphicalLasso([alpha, mode, ...])|Sparse inverse covariance estimation with an l1-penalized estimator.| |covariance.GraphicalLassoCV(*[, alphas, ...])|Sparse inverse covariance w/ cross-validated choice of the l1 penalty.| |covariance.LedoitWolf(*[, store_precision, ...])|LedoitWolf Estimator.| |covariance.MinCovDet(*[, store_precision, ...])|Minimum Covariance Determinant (MCD): robust estimator of covariance.| |covariance.OAS(*[, store_precision, ...])|Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].| |covariance.ShrunkCovariance(*[, ...])|Covariance estimator with shrinkage.| |covariance.empirical_covariance(X, *[, ...])|Compute the Maximum likelihood covariance estimator.| |covariance.graphical_lasso(emp_cov, alpha, *)|L1-penalized covariance estimator.| |covariance.ledoit_wolf(X, *[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.| |covariance.ledoit_wolf_shrinkage(X[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.| |covariance.oas(X, *[, assume_centered])|Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].| |covariance.shrunk_covariance(emp_cov[, ...])|Calculate a covariance matrix shrunk on the diagonal.| ## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition) ||| |---|---| |cross_decomposition.CCA([n_components, ...])|Canonical Correlation Analysis, also known as "Mode B" PLS.| |cross_decomposition.PLSCanonical([...])|Partial Least Squares transformer and regressor.| |cross_decomposition.PLSRegression([...])|PLS regression.| |cross_decomposition.PLSSVD([n_components, ...])|Partial Least Square SVD.| ## [sklearn.datasets: Datasets](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets) ## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition) ||| |---|---| |decomposition.DictionaryLearning([...])|Dictionary learning.| |decomposition.FactorAnalysis([n_components, ...])|Factor Analysis (FA).| |**[decomposition.FastICA([n_components, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA)**|**FastICA: a fast algorithm for Independent Component Analysis.**| |decomposition.IncrementalPCA([n_components, ...])|Incremental principal components analysis (IPCA).| |decomposition.KernelPCA([n_components, ...])|Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].| |decomposition.LatentDirichletAllocation([...])|Latent Dirichlet Allocation with online variational Bayes algorithm.| |decomposition.MiniBatchDictionaryLearning([...])|Mini-batch dictionary learning.| |decomposition.MiniBatchSparsePCA([...])|Mini-batch Sparse Principal Components Analysis.| |decomposition.NMF([n_components, init, ...])|Non-Negative Matrix Factorization (NMF).| |decomposition.MiniBatchNMF([n_components, ...])|Mini-Batch Non-Negative Matrix Factorization (NMF).| |**[decomposition.PCA([n_components, copy, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA)**|**Principal component analysis (PCA).**| |decomposition.SparsePCA([n_components, ...])|Sparse Principal Components Analysis (SparsePCA).| |decomposition.SparseCoder(dictionary, *[, ...])|Sparse coding.| |decomposition.TruncatedSVD([n_components, ...])|Dimensionality reduction using truncated SVD (aka LSA).| |decomposition.dict_learning(X, n_components, ...)|Solve a dictionary learning matrix factorization problem.| |decomposition.dict_learning_online(X[, ...])|Solve a dictionary learning matrix factorization problem online.| |decomposition.fastica(X[, n_components, ...])|Perform Fast Independent Component Analysis.| |decomposition.non_negative_factorization(X)|Compute Non-negative Matrix Factorization (NMF).| |decomposition.sparse_encode(X, dictionary, *)|Sparse coding.| ## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis) ||| |---|---| |discriminant_analysis.LinearDiscriminantAnalysis([...])|Linear Discriminant Analysis.| |discriminant_analysis.QuadraticDiscriminantAnalysis(*)|Quadratic Discriminant Analysis.| ## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy) ||| |---|---| |dummy.DummyClassifier(*[, strategy, ...])|DummyClassifier makes predictions that ignore the input features.| |dummy.DummyRegressor(*[, strategy, ...])|Regressor that makes predictions using simple rules.| ## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble) ||| |---|---| |ensemble.AdaBoostClassifier([estimator, ...])|An AdaBoost classifier.| |ensemble.AdaBoostRegressor([estimator, ...])|An AdaBoost regressor.| |ensemble.BaggingClassifier([estimator, ...])|A Bagging classifier.| |ensemble.BaggingRegressor([estimator, ...])|A Bagging regressor.| |ensemble.ExtraTreesClassifier([...])|An extra-trees classifier.| |ensemble.ExtraTreesRegressor([n_estimators, ...])|An extra-trees regressor.| |ensemble.GradientBoostingClassifier(*[, ...])|Gradient Boosting for classification.| |ensemble.GradientBoostingRegressor(*[, ...])|Gradient Boosting for regression.| |ensemble.IsolationForest(*[, n_estimators, ...])|Isolation Forest Algorithm.| |ensemble.RandomForestClassifier([...])|A random forest classifier.| |ensemble.RandomForestRegressor([...])|A random forest regressor.| |ensemble.RandomTreesEmbedding([...])|An ensemble of totally random trees.| |ensemble.StackingClassifier(estimators[, ...])|Stack of estimators with a final classifier.| |ensemble.StackingRegressor(estimators[, ...])|Stack of estimators with a final regressor.| |ensemble.VotingClassifier(estimators, *[, ...])|Soft Voting/Majority Rule classifier for unfitted estimators.| |ensemble.VotingRegressor(estimators, *[, ...])|Prediction voting regressor for unfitted estimators.| |ensemble.HistGradientBoostingRegressor([...])|Histogram-based Gradient Boosting Regression Tree.| |ensemble.HistGradientBoostingClassifier([...])|Histogram-based Gradient Boosting Classification Tree.| ## [sklearn.exceptions: Exceptions and warnings](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions) ## [sklearn.experimental: Experimental](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental) ## [sklearn.feature_extraction: Feature Extraction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction) ||| |---|---| |feature_extraction.DictVectorizer(*[, ...])|Transforms lists of feature-value mappings to vectors.| |feature_extraction.FeatureHasher([...])|Implements feature hashing, aka the hashing trick.| ### From images ||| |---|---| |feature_extraction.image.extract_patches_2d(...)|Reshape a 2D image into a collection of patches.| |feature_extraction.image.grid_to_graph(n_x, n_y)|Graph of the pixel-to-pixel connections.| |feature_extraction.image.img_to_graph(img, *)|Graph of the pixel-to-pixel gradient connections.| |feature_extraction.image.reconstruct_from_patches_2d(...)|Reconstruct the image from all of its patches.| |feature_extraction.image.PatchExtractor(*[, ...])|Extracts patches from a collection of images.| ### From text ||| |---|---| |feature_extraction.text.CountVectorizer(*[, ...])|Convert a collection of text documents to a matrix of token counts.| |feature_extraction.text.HashingVectorizer(*)|Convert a collection of text documents to a matrix of token occurrences.| |feature_extraction.text.TfidfTransformer(*)|Transform a count matrix to a normalized tf or tf-idf representation.| |feature_extraction.text.TfidfVectorizer(*[, ...])|Convert a collection of raw documents to a matrix of TF-IDF features.| ## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection) ||| |---|---| |feature_selection.GenericUnivariateSelect([...])|Univariate feature selector with configurable strategy.| |feature_selection.SelectPercentile([...])|Select features according to a percentile of the highest scores.| |feature_selection.SelectKBest([score_func, k])|Select features according to the k highest scores.| |feature_selection.SelectFpr([score_func, alpha])|Filter: Select the pvalues below alpha based on a FPR test.| |feature_selection.SelectFdr([score_func, alpha])|Filter: Select the p-values for an estimated false discovery rate.| |feature_selection.SelectFromModel(estimator, *)|Meta-transformer for selecting features based on importance weights.| |feature_selection.SelectFwe([score_func, alpha])|Filter: Select the p-values corresponding to Family-wise error rate.| |feature_selection.SequentialFeatureSelector(...)|Transformer that performs Sequential Feature Selection.| |feature_selection.RFE(estimator, *[, ...])|Feature ranking with recursive feature elimination.| |feature_selection.RFECV(estimator, *[, ...])|Recursive feature elimination with cross-validation to select features.| |feature_selection.VarianceThreshold([threshold])|Feature selector that removes all low-variance features.| |feature_selection.chi2(X, y)|Compute chi-squared stats between each non-negative feature and class.| |feature_selection.f_classif(X, y)|Compute the ANOVA F-value for the provided sample.| |feature_selection.f_regression(X, y, *[, ...])|Univariate linear regression tests returning F-statistic and p-values.| |feature_selection.r_regression(X, y, *[, ...])|Compute Pearson's r for each features and the target.| |feature_selection.mutual_info_classif(X, y, *)|Estimate mutual information for a discrete target variable.| |feature_selection.mutual_info_regression(X, y, *)|Estimate mutual information for a continuous target variable.| ## [sklearn.gaussian_process: Gaussian Processes]() ||| |---|---| |gaussian_process.GaussianProcessClassifier([...])|Gaussian process classification (GPC) based on Laplace approximation.| |gaussian_process.GaussianProcessRegressor([...])|Gaussian process regression (GPR).| ### Kernels ||| |---|---| |gaussian_process.kernels.CompoundKernel(kernels)|Kernel which is composed of a set of other kernels.| |gaussian_process.kernels.ConstantKernel([...])|Constant kernel.| |gaussian_process.kernels.DotProduct([...])|Dot-Product kernel.| |gaussian_process.kernels.ExpSineSquared([...])|Exp-Sine-Squared kernel (aka periodic kernel).| |gaussian_process.kernels.Exponentiation(...)|The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via| |gaussian_process.kernels.Hyperparameter(...)|A kernel hyperparameter's specification in form of a namedtuple.| |gaussian_process.kernels.Kernel()|Base class for all kernels.| |gaussian_process.kernels.Matern([...])|Matern kernel.| |gaussian_process.kernels.PairwiseKernel([...])|Wrapper for kernels in sklearn.metrics.pairwise.| |gaussian_process.kernels.Product(k1, k2)|The Product kernel takes two kernels k1 and k2 and combines them via| |gaussian_process.kernels.RBF([length_scale, ...])|Radial basis function kernel (aka squared-exponential kernel).| |gaussian_process.kernels.RationalQuadratic([...])|Rational Quadratic kernel.| |gaussian_process.kernels.Sum(k1, k2)|The Sum kernel takes two kernels k1 and k2 and combines them via| |gaussian_process.kernels.WhiteKernel([...])|White kernel.| ## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute) ||| |---|---| |impute.SimpleImputer(*[, missing_values, ...])|Univariate imputer for completing missing values with simple strategies.| |impute.IterativeImputer([estimator, ...])|Multivariate imputer that estimates each feature from all the others.| |impute.MissingIndicator(*[, missing_values, ...])|Binary indicators for missing values.| |impute.KNNImputer(*[, missing_values, ...])|Imputation for completing missing values using k-Nearest Neighbors.| ## [sklearn.inspection: Inspection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection) ||| |---|---| |inspection.partial_dependence(estimator, X, ...)|Partial dependence of features.| |inspection.permutation_importance(estimator, ...)|Permutation importance for feature evaluation [Rd9e56ef97513-BRE].| ### Plotting ||| |---|---| |inspection.DecisionBoundaryDisplay(*, xx0, ...)|Decisions boundary visualization.| |inspection.PartialDependenceDisplay(...[, ...])|Partial Dependence Plot (PDP).| ## [sklearn.isotonic: Isotonic regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.isotonic) ||| |---|---| |isotonic.IsotonicRegression(*[, y_min, ...])|Isotonic regression model.| |isotonic.check_increasing(x, y)|Determine whether y is monotonically correlated with x.| |isotonic.isotonic_regression(y, *[, ...])|Solve the isotonic regression model.| ## [sklearn.kernel_approximation: Kernel Approximation](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation) ||| |---|---| |kernel_approximation.AdditiveChi2Sampler(*)|Approximate feature map for additive chi2 kernel.| |kernel_approximation.Nystroem([kernel, ...])|Approximate a kernel map using a subset of the training data.| |kernel_approximation.PolynomialCountSketch(*)|Polynomial kernel approximation via Tensor Sketch.| |kernel_approximation.RBFSampler(*[, gamma, ...])|Approximate a RBF kernel feature map using random Fourier features.| |kernel_approximation.SkewedChi2Sampler(*[, ...])|Approximate feature map for "skewed chi-squared" kernel.| ## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge) ||| |---|---| |kernel_ridge.KernelRidge([alpha, kernel, ...])|Kernel ridge regression.| ## [sklearn.linear_model: Linear Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) ### Linear classifiers ||| |---|---| |linear_model.LogisticRegression([penalty, ...])|Logistic Regression (aka logit, MaxEnt) classifier.| |linear_model.LogisticRegressionCV(*[, Cs, ...])|Logistic Regression CV (aka logit, MaxEnt) classifier.| |linear_model.PassiveAggressiveClassifier(*)|Passive Aggressive Classifier.| |linear_model.Perceptron(*[, penalty, alpha, ...])|Linear perceptron classifier.| |linear_model.RidgeClassifier([alpha, ...])|Classifier using Ridge regression.| |linear_model.RidgeClassifierCV([alphas, ...])|Ridge classifier with built-in cross-validation.| |linear_model.SGDClassifier([loss, penalty, ...])|Linear classifiers (SVM, logistic regression, etc.) with SGD training.| |linear_model.SGDOneClassSVM([nu, ...])|Solves linear One-Class SVM using Stochastic Gradient Descent.| ### Classical linear regressors ||| |---|---| |linear_model.LinearRegression(*[, ...])|Ordinary least squares Linear Regression.| |linear_model.Ridge([alpha, fit_intercept, ...])|Linear least squares with l2 regularization.| |linear_model.RidgeCV([alphas, ...])|Ridge regression with built-in cross-validation.| |linear_model.SGDRegressor([loss, penalty, ...])|Linear model fitted by minimizing a regularized empirical loss with SGD.| ### Regressors with variable selection ||| |---|---| |linear_model.ElasticNet([alpha, l1_ratio, ...])|Linear regression with combined L1 and L2 priors as regularizer.| |linear_model.ElasticNetCV(*[, l1_ratio, ...])|Elastic Net model with iterative fitting along a regularization path.| |linear_model.Lars(*[, fit_intercept, ...])|Least Angle Regression model a.k.a.| |linear_model.LarsCV(*[, fit_intercept, ...])|Cross-validated Least Angle Regression model.| |linear_model.Lasso([alpha, fit_intercept, ...])|Linear Model trained with L1 prior as regularizer (aka the Lasso).| |linear_model.LassoCV(*[, eps, n_alphas, ...])|Lasso linear model with iterative fitting along a regularization path.| |linear_model.LassoLars([alpha, ...])|Lasso model fit with Least Angle Regression a.k.a.| |linear_model.LassoLarsCV(*[, fit_intercept, ...])|Cross-validated Lasso, using the LARS algorithm.| |linear_model.LassoLarsIC([criterion, ...])|Lasso model fit with Lars using BIC or AIC for model selection.| |linear_model.OrthogonalMatchingPursuit(*[, ...])|Orthogonal Matching Pursuit model (OMP).| |linear_model.OrthogonalMatchingPursuitCV(*)|Cross-validated Orthogonal Matching Pursuit model (OMP).| ### Bayesian regressors ||| |---|---| |linear_model.ARDRegression(*[, max_iter, ...])|Bayesian ARD regression.| |linear_model.BayesianRidge(*[, max_iter, ...])|Bayesian ridge regression.| ### Multi-task linear regressors with variable selection ||| |---|---| |linear_model.MultiTaskElasticNet([alpha, ...])|Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.| |linear_model.MultiTaskElasticNetCV(*[, ...])|Multi-task L1/L2 ElasticNet with built-in cross-validation.| |linear_model.MultiTaskLasso([alpha, ...])|Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.| |linear_model.MultiTaskLassoCV(*[, eps, ...])|Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.| ### Outlier-robust regressors ||| |---|---| |linear_model.HuberRegressor(*[, epsilon, ...])|L2-regularized linear regression model that is robust to outliers.| |linear_model.QuantileRegressor(*[, ...])|Linear regression model that predicts conditional quantiles.| |linear_model.RANSACRegressor([estimator, ...])|RANSAC (RANdom SAmple Consensus) algorithm.| |linear_model.TheilSenRegressor(*[, ...])|Theil-Sen Estimator: robust multivariate regression model.| ### Generalized linear models (GLM) for regression ||| |---|---| |linear_model.PoissonRegressor(*[, alpha, ...])|Generalized Linear Model with a Poisson distribution.| |linear_model.TweedieRegressor(*[, power, ...])|Generalized Linear Model with a Tweedie distribution.| |linear_model.GammaRegressor(*[, alpha, ...])|Generalized Linear Model with a Gamma distribution.| ### Miscellaneous ||| |---|---| |linear_model.PassiveAggressiveRegressor(*[, ...])|Passive Aggressive Regressor.| |linear_model.enet_path(X, y, *[, l1_ratio, ...])|Compute elastic net path with coordinate descent.| |linear_model.lars_path(X, y[, Xy, Gram, ...])|Compute Least Angle Regression or Lasso path using the LARS algorithm [1].| |linear_model.lars_path_gram(Xy, Gram, *, ...)|The lars_path in the sufficient stats mode [1].| |linear_model.lasso_path(X, y, *[, eps, ...])|Compute Lasso path with coordinate descent.| |linear_model.orthogonal_mp(X, y, *[, ...])|Orthogonal Matching Pursuit (OMP).| |linear_model.orthogonal_mp_gram(Gram, Xy, *)|Gram Orthogonal Matching Pursuit (OMP).| |linear_model.ridge_regression(X, y, alpha, *)|Solve the ridge equation by the method of normal equations.| ## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold) ||| |---|---| |manifold.Isomap(*[, n_neighbors, radius, ...])|Isomap Embedding.| |manifold.LocallyLinearEmbedding(*[, ...])|Locally Linear Embedding.| |manifold.MDS([n_components, metric, n_init, ...])|Multidimensional scaling.| |manifold.SpectralEmbedding([n_components, ...])|Spectral embedding for non-linear dimensionality reduction.| |manifold.TSNE([n_components, perplexity, ...])|T-distributed Stochastic Neighbor Embedding.| |manifold.locally_linear_embedding(X, *, ...)|Perform a Locally Linear Embedding analysis on the data.| |manifold.smacof(dissimilarities, *[, ...])|Compute multidimensional scaling using the SMACOF algorithm.| |manifold.spectral_embedding(adjacency, *[, ...])|Project the sample on the first eigenvectors of the graph Laplacian.| |manifold.trustworthiness(X, X_embedded, *[, ...])|Indicate to what extent the local structure is retained.| ## [sklearn.metrics: Metrics](https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics) ### Model Selection Interface ||| |---|---| |metrics.check_scoring(estimator[, scoring, ...])|Determine scorer from user options.| |metrics.get_scorer(scoring)|Get a scorer from string.| |metrics.get_scorer_names()|Get the names of all available scorers.| |metrics.make_scorer(score_func, *[, ...])|Make a scorer from a performance metric or loss function.| ### Classification metrics ||| |---|---| |metrics.accuracy_score(y_true, y_pred, *[, ...])|Accuracy classification score.| |metrics.auc(x, y)|Compute Area Under the Curve (AUC) using the trapezoidal rule.| |metrics.average_precision_score(y_true, ...)|Compute average precision (AP) from prediction scores.| |metrics.balanced_accuracy_score(y_true, ...)|Compute the balanced accuracy.| |metrics.brier_score_loss(y_true, y_prob, *)|Compute the Brier score loss.| |metrics.class_likelihood_ratios(y_true, ...)|Compute binary classification positive and negative likelihood ratios.| |metrics.classification_report(y_true, y_pred, *)|Build a text report showing the main classification metrics.| |metrics.cohen_kappa_score(y1, y2, *[, ...])|Compute Cohen's kappa: a statistic that measures inter-annotator agreement.| |metrics.confusion_matrix(y_true, y_pred, *)|Compute confusion matrix to evaluate the accuracy of a classification.| |metrics.dcg_score(y_true, y_score, *[, k, ...])|Compute Discounted Cumulative Gain.| |metrics.det_curve(y_true, y_score[, ...])|Compute error rates for different probability thresholds.| |metrics.f1_score(y_true, y_pred, *[, ...])|Compute the F1 score, also known as balanced F-score or F-measure.| |metrics.fbeta_score(y_true, y_pred, *, beta)|Compute the F-beta score.| |metrics.hamming_loss(y_true, y_pred, *[, ...])|Compute the average Hamming loss.| |metrics.hinge_loss(y_true, pred_decision, *)|Average hinge loss (non-regularized).| |metrics.jaccard_score(y_true, y_pred, *[, ...])|Jaccard similarity coefficient score.| |metrics.log_loss(y_true, y_pred, *[, eps, ...])|Log loss, aka logistic loss or cross-entropy loss.| |metrics.matthews_corrcoef(y_true, y_pred, *)|Compute the Matthews correlation coefficient (MCC).| |metrics.multilabel_confusion_matrix(y_true, ...)|Compute a confusion matrix for each class or sample.| |metrics.ndcg_score(y_true, y_score, *[, k, ...])|Compute Normalized Discounted Cumulative Gain.| |metrics.precision_recall_curve(y_true, ...)|Compute precision-recall pairs for different probability thresholds.| |metrics.precision_recall_fscore_support(...)|Compute precision, recall, F-measure and support for each class.| |metrics.precision_score(y_true, y_pred, *[, ...])|Compute the precision.| |metrics.recall_score(y_true, y_pred, *[, ...])|Compute the recall.| |metrics.roc_auc_score(y_true, y_score, *[, ...])|Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.| |metrics.roc_curve(y_true, y_score, *[, ...])|Compute Receiver operating characteristic (ROC).| |metrics.top_k_accuracy_score(y_true, y_score, *)|Top-k Accuracy classification score.| |metrics.zero_one_loss(y_true, y_pred, *[, ...])|Zero-one classification loss.| ### Regression metrics ||| |---|---| |metrics.explained_variance_score(y_true, ...)|Explained variance regression score function.| |metrics.max_error(y_true, y_pred)|The max_error metric calculates the maximum residual error.| |metrics.mean_absolute_error(y_true, y_pred, *)|Mean absolute error regression loss.| |metrics.mean_squared_error(y_true, y_pred, *)|Mean squared error regression loss.| |metrics.mean_squared_log_error(y_true, y_pred, *)|Mean squared logarithmic error regression loss.| |metrics.median_absolute_error(y_true, y_pred, *)|Median absolute error regression loss.| |metrics.mean_absolute_percentage_error(...)|Mean absolute percentage error (MAPE) regression loss.| |metrics.r2_score(y_true, y_pred, *[, ...])|R^2 (coefficient of determination) regression score function.| |metrics.mean_poisson_deviance(y_true, y_pred, *)|Mean Poisson deviance regression loss.| |metrics.mean_gamma_deviance(y_true, y_pred, *)|Mean Gamma deviance regression loss.| |metrics.mean_tweedie_deviance(y_true, y_pred, *)|Mean Tweedie deviance regression loss.| |metrics.d2_tweedie_score(y_true, y_pred, *)|D^2 regression score function, fraction of Tweedie deviance explained.| |metrics.mean_pinball_loss(y_true, y_pred, *)|Pinball loss for quantile regression.| |metrics.d2_pinball_score(y_true, y_pred, *)|D^2 regression score function, fraction of pinball loss explained.| |metrics.d2_absolute_error_score(y_true, ...)|D^2 regression score function, fraction of absolute error explained.| ### Multilabel ranking metrics ||| |---|---| |metrics.coverage_error(y_true, y_score, *[, ...])|Coverage error measure.| |metrics.label_ranking_average_precision_score(...)|Compute ranking-based average precision.| |metrics.label_ranking_loss(y_true, y_score, *)|Compute Ranking loss measure.| ### Clustering metrics ||| |---|---| |metrics.adjusted_mutual_info_score(...[, ...])|Adjusted Mutual Information between two clusterings.| |metrics.adjusted_rand_score(labels_true, ...)|Rand index adjusted for chance.| |metrics.calinski_harabasz_score(X, labels)|Compute the Calinski and Harabasz score.| |metrics.davies_bouldin_score(X, labels)|Compute the Davies-Bouldin score.| |metrics.completeness_score(labels_true, ...)|Compute completeness metric of a cluster labeling given a ground truth.| |metrics.cluster.contingency_matrix(...[, ...])|Build a contingency matrix describing the relationship between labels.| |metrics.cluster.pair_confusion_matrix(...)|Pair confusion matrix arising from two clusterings [R9ca8fd06d29a-1].| |metrics.fowlkes_mallows_score(labels_true, ...)|Measure the similarity of two clusterings of a set of points.| |metrics.homogeneity_completeness_v_measure(...)|Compute the homogeneity and completeness and V-Measure scores at once.| |metrics.homogeneity_score(labels_true, ...)|Homogeneity metric of a cluster labeling given a ground truth.| |metrics.mutual_info_score(labels_true, ...)|Mutual Information between two clusterings.| |metrics.normalized_mutual_info_score(...[, ...])|Normalized Mutual Information between two clusterings.| |metrics.rand_score(labels_true, labels_pred)|Rand index.| |metrics.silhouette_score(X, labels, *[, ...])|Compute the mean Silhouette Coefficient of all samples.| |metrics.silhouette_samples(X, labels, *[, ...])|Compute the Silhouette Coefficient for each sample.| |metrics.v_measure_score(labels_true, ...[, beta])|V-measure cluster labeling given a ground truth.| ### Biclustering metrics ||| |---|---| |metrics.consensus_score(a, b, *[, similarity])|The similarity of two sets of biclusters.| ### Distance metrics ||| |---|---| |metrics.DistanceMetric|Uniform interface for fast distance metric functions.| ### Pairwise metrics ||| |---|---| |metrics.pairwise.additive_chi2_kernel(X[, Y])|Compute the additive chi-squared kernel between observations in X and Y.| |metrics.pairwise.chi2_kernel(X[, Y, gamma])|Compute the exponential chi-squared kernel between X and Y.| |metrics.pairwise.cosine_similarity(X[, Y, ...])|Compute cosine similarity between samples in X and Y.| |metrics.pairwise.cosine_distances(X[, Y])|Compute cosine distance between samples in X and Y.| |metrics.pairwise.distance_metrics()|Valid metrics for pairwise_distances.| |metrics.pairwise.euclidean_distances(X[, Y, ...])|Compute the distance matrix between each pair from a vector array X and Y.| |metrics.pairwise.haversine_distances(X[, Y])|Compute the Haversine distance between samples in X and Y.| |metrics.pairwise.kernel_metrics()|Valid metrics for pairwise_kernels.| |metrics.pairwise.laplacian_kernel(X[, Y, gamma])Compute the laplacian kernel between X and Y.| |metrics.pairwise.linear_kernel(X[, Y, ...])|Compute the linear kernel between X and Y.| |metrics.pairwise.manhattan_distances(X[, Y, ...])|Compute the L1 distances between the vectors in X and Y.| |metrics.pairwise.nan_euclidean_distances(X)|Calculate the euclidean distances in the presence of missing values.| |metrics.pairwise.pairwise_kernels(X[, Y, ...])|Compute the kernel between arrays X and optional array Y.| |metrics.pairwise.polynomial_kernel(X[, Y, ...])|Compute the polynomial kernel between X and Y.| |metrics.pairwise.rbf_kernel(X[, Y, gamma])|Compute the rbf (gaussian) kernel between X and Y.| |metrics.pairwise.sigmoid_kernel(X[, Y, ...])|Compute the sigmoid kernel between X and Y.| |metrics.pairwise.paired_euclidean_distances(X, Y)|Compute the paired euclidean distances between X and Y.| |metrics.pairwise.paired_manhattan_distances(X, Y)|Compute the paired L1 distances between X and Y.| |metrics.pairwise.paired_cosine_distances(X, Y)|Compute the paired cosine distances between X and Y.| |metrics.pairwise.paired_distances(X, Y, *[, ...])|Compute the paired distances between X and Y.| |metrics.pairwise_distances(X[, Y, metric, ...])|Compute the distance matrix from a vector array X and optional Y.| |metrics.pairwise_distances_argmin(X, Y, *[, ...])|Compute minimum distances between one point and a set of points.| |metrics.pairwise_distances_argmin_min(X, Y, *)|Compute minimum distances between one point and a set of points.| |metrics.pairwise_distances_chunked(X[, Y, ...])|Generate a distance matrix chunk by chunk with optional reduction.| ### Plotting ||| |---|---| |metrics.ConfusionMatrixDisplay(...[, ...])|Confusion Matrix visualization.| |metrics.DetCurveDisplay(*, fpr, fnr[, ...])|DET curve visualization.| |metrics.PrecisionRecallDisplay(precision, ...)|Precision Recall visualization.| |metrics.PredictionErrorDisplay(*, y_true, y_pred)|Visualization of the prediction error of a regression model.| |metrics.RocCurveDisplay(*, fpr, tpr[, ...])|ROC Curve visualization.| |calibration.CalibrationDisplay(prob_true, ...)|Calibration curve (also known as reliability diagram) visualization.| ## [sklearn.mixture: Gaussian Mixture Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.mixture) ||| |---|---| |mixture.BayesianGaussianMixture(*[, ...])|Variational Bayesian estimation of a Gaussian mixture.| |mixture.GaussianMixture([n_components, ...])|Gaussian Mixture.| ## [sklearn.model_selection: Model Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection) ### Splitter Classes ||| |---|---| |model_selection.GroupKFold([n_splits])|K-fold iterator variant with non-overlapping groups.| |model_selection.GroupShuffleSplit([...])|Shuffle-Group(s)-Out cross-validation iterator| |model_selection.KFold([n_splits, shuffle, ...])|K-Folds cross-validator| |model_selection.LeaveOneGroupOut()|Leave One Group Out cross-validator| |model_selection.LeavePGroupsOut(n_groups)|Leave P Group(s) Out cross-validator| |model_selection.LeaveOneOut()|Leave-One-Out cross-validator| |model_selection.LeavePOut(p)|Leave-P-Out cross-validator| |model_selection.PredefinedSplit(test_fold)|Predefined split cross-validator| |model_selection.RepeatedKFold(*[, n_splits, ...])|Repeated K-Fold cross validator.| |model_selection.RepeatedStratifiedKFold(*[, ...])|Repeated Stratified K-Fold cross validator.| |model_selection.ShuffleSplit([n_splits, ...])|Random permutation cross-validator| |model_selection.StratifiedKFold([n_splits, ...])|Stratified K-Folds cross-validator.| |model_selection.StratifiedShuffleSplit([...])|Stratified ShuffleSplit cross-validator| |model_selection.StratifiedGroupKFold([...])|Stratified K-Folds iterator variant with non-overlapping groups.| |model_selection.TimeSeriesSplit([n_splits, ...])|Time Series cross-validator| ### Splitter Functions ||| |---|---| |model_selection.check_cv([cv, y, classifier])|Input checker utility for building a cross-validator.| |model_selection.train_test_split(*arrays[, ...])|Split arrays or matrices into random train and test subsets.| ### Hyper-parameter optimizers ||| |---|---| |model_selection.GridSearchCV(estimator, ...)|Exhaustive search over specified parameter values for an estimator.| |model_selection.HalvingGridSearchCV(...[, ...])|Search over specified parameter values with successive halving.| |model_selection.ParameterGrid(param_grid)|Grid of parameters with a discrete number of values for each.| |model_selection.ParameterSampler(...[, ...])|Generator on parameters sampled from given distributions.| |model_selection.RandomizedSearchCV(...[, ...])|Randomized search on hyper parameters.| |model_selection.HalvingRandomSearchCV(...[, ...])|Randomized search on hyper parameters.| ### Model validation ||| |---|---| |model_selection.cross_validate(estimator, X)|Evaluate metric(s) by cross-validation and also record fit/score times.| |model_selection.cross_val_predict(estimator, X)|Generate cross-validated estimates for each input data point.| |model_selection.cross_val_score(estimator, X)|Evaluate a score by cross-validation.| |model_selection.learning_curve(estimator, X, ...)|Learning curve.| |model_selection.permutation_test_score(...)|Evaluate the significance of a cross-validated score with permutations.| |model_selection.validation_curve(estimator, ...)|Validation curve.| ### Visualization ||| |---|---| |model_selection.LearningCurveDisplay(*, ...)|Learning Curve visualization.| |model_selection.ValidationCurveDisplay(*, ...)|Validation Curve visualization.| ## [sklearn.multiclass: Multiclass classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multiclass) ||| |---|---| |multiclass.OneVsRestClassifier(estimator, *)|One-vs-the-rest (OvR) multiclass strategy.| |multiclass.OneVsOneClassifier(estimator, *)|One-vs-one multiclass strategy.| |multiclass.OutputCodeClassifier(estimator, *)|(Error-Correcting) Output-Code multiclass strategy.| ## [sklearn.multioutput: Multioutput regression and classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multioutput) ||| |---|---| |multioutput.ClassifierChain(base_estimator, *)|A multi-label model that arranges binary classifiers into a chain.| |multioutput.MultiOutputRegressor(estimator, *)|Multi target regression.| |multioutput.MultiOutputClassifier(estimator, *)|Multi target classification.| |multioutput.RegressorChain(base_estimator, *)|A multi-label model that arranges regressions into a chain.| ## [sklearn.naive_bayes: Naive Bayes](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes) ||| |---|---| |naive_bayes.BernoulliNB(*[, alpha, ...])|Naive Bayes classifier for multivariate Bernoulli models.| |naive_bayes.CategoricalNB(*[, alpha, ...])|Naive Bayes classifier for categorical features.| |naive_bayes.ComplementNB(*[, alpha, ...])|The Complement Naive Bayes classifier described in Rennie et al. (2003).| |naive_bayes.GaussianNB(*[, priors, ...])|Gaussian Naive Bayes (GaussianNB).| |naive_bayes.MultinomialNB(*[, alpha, ...])|Naive Bayes classifier for multinomial models.| ## [sklearn.neighbors: Nearest Neighbors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors) ||| |---|---| |neighbors.BallTree(X[, leaf_size, metric])|BallTree for fast generalized N-point problems| |neighbors.KDTree(X[, leaf_size, metric])|KDTree for fast generalized N-point problems| |neighbors.KernelDensity(*[, bandwidth, ...])|Kernel Density Estimation.| |**[neighbors.KNeighborsClassifier([...])](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier)**|**Classifier implementing the k-nearest neighbors vote.**| |**[neighbors.KNeighborsRegressor([n_neighbors, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor)**|**Regression based on k-nearest neighbors.**| |neighbors.KNeighborsTransformer(*[, mode, ...])|Transform X into a (weighted) graph of k nearest neighbors.| |neighbors.LocalOutlierFactor([n_neighbors, ...])|Unsupervised Outlier Detection using the Local Outlier Factor (LOF).| |neighbors.RadiusNeighborsClassifier([...])|Classifier implementing a vote among neighbors within a given radius.| |neighbors.RadiusNeighborsRegressor([radius, ...])|Regression based on neighbors within a fixed radius.| |neighbors.RadiusNeighborsTransformer(*[, ...])|Transform X into a (weighted) graph of neighbors nearer than a radius.| |neighbors.NearestCentroid([metric, ...])|Nearest centroid classifier.| |neighbors.NearestNeighbors(*[, n_neighbors, ...])|Unsupervised learner for implementing neighbor searches.| |neighbors.NeighborhoodComponentsAnalysis([...])|Neighborhood Components Analysis.| |neighbors.kneighbors_graph(X, n_neighbors, *)|Compute the (weighted) graph of k-Neighbors for points in X.| |neighbors.radius_neighbors_graph(X, radius, *)|Compute the (weighted) graph of Neighbors for points in X.| |neighbors.sort_graph_by_row_values(graph[, ...])|Sort a sparse graph such that each row is stored with increasing values.| ## [sklearn.neural_network: Neural network models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network) ||| |---|---| |pipeline.FeatureUnion(transformer_list, *[, ...])|Concatenates results of multiple transformer objects.| |pipeline.Pipeline(steps, *[, memory, verbose])|Pipeline of transforms with a final estimator.| |pipeline.make_pipeline(*steps[, memory, verbose])|Construct a Pipeline from the given estimators.| |pipeline.make_union(*transformers[, n_jobs, ...])|Construct a FeatureUnion from the given transformers.| ## [sklearn.pipeline: Pipeline](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline) ## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing) ||| |---|---| |preprocessing.Binarizer(*[, threshold, copy])|Binarize data (set feature values to 0 or 1) according to a threshold.| |preprocessing.FunctionTransformer([func, ...])|Constructs a transformer from an arbitrary callable.| |preprocessing.KBinsDiscretizer([n_bins, ...])|Bin continuous data into intervals.| |preprocessing.KernelCenterer()|Center an arbitrary kernel matrix | |preprocessing.LabelBinarizer(*[, neg_label, ...])|Binarize labels in a one-vs-all fashion.| |preprocessing.LabelEncoder()|Encode target labels with value between 0 and n_classes-1.v |preprocessing.MultiLabelBinarizer(*[, ...])|Transform between iterable of iterables and a multilabel format.| |preprocessing.MaxAbsScaler(*[, copy])|Scale each feature by its maximum absolute value.| |preprocessing.MinMaxScaler([feature_range, ...])|Transform features by scaling each feature to a given range.| |preprocessing.Normalizer([norm, copy])|Normalize samples individually to unit norm.| |preprocessing.OneHotEncoder(*[, categories, ...])|Encode categorical features as a one-hot numeric array.| |preprocessing.OrdinalEncoder(*[, ...])|Encode categorical features as an integer array.| |preprocessing.PolynomialFeatures([degree, ...])|Generate polynomial and interaction features.| |preprocessing.PowerTransformer([method, ...])|Apply a power transform featurewise to make data more Gaussian-like.| |preprocessing.QuantileTransformer(*[, ...])|Transform features using quantiles information.| |preprocessing.RobustScaler(*[, ...])|Scale features using statistics that are robust to outliers.| |preprocessing.SplineTransformer([n_knots, ...])|Generate univariate B-spline bases for features.| |preprocessing.StandardScaler(*[, copy, ...])|Standardize features by removing the mean and scaling to unit variance.| |preprocessing.TargetEncoder([categories, ...])|Target Encoder for regression and classification targets.| |preprocessing.add_dummy_feature(X[, value])|Augment dataset with an additional dummy feature.| |preprocessing.binarize(X, *[, threshold, copy])|Boolean thresholding of array-like or scipy.sparse matrix.| |preprocessing.label_binarize(y, *, classes)|Binarize labels in a one-vs-all fashion.| |preprocessing.maxabs_scale(X, *[, axis, copy])|Scale each feature to the [-1, 1] range without breaking the sparsity.| |preprocessing.minmax_scale(X[, ...])|Transform features by scaling each feature to a given range.| |preprocessing.normalize(X[, norm, axis, ...])|Scale input vectors individually to unit norm (vector length).| |preprocessing.quantile_transform(X, *[, ...])|Transform features using quantiles information.| |preprocessing.robust_scale(X, *[, axis, ...])|Standardize a dataset along any axis.| |preprocessing.scale(X, *[, axis, with_mean, ...])|Standardize a dataset along any axis.| |preprocessing.power_transform(X[, method, ...])|Parametric, monotonic transformation to make data more Gaussian-like.| ## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection) ||| |---|---| |random_projection.GaussianRandomProjection([...])|Reduce dimensionality through Gaussian random projection.| |random_projection.SparseRandomProjection([...])|Reduce dimensionality through sparse random projection.| |random_projection.johnson_lindenstrauss_min_dim(...)|Find a 'safe' number of components to randomly project to.| ## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised) ||| |---|---| |semi_supervised.LabelPropagation([kernel, ...])|Label Propagation classifier.| |semi_supervised.LabelSpreading([kernel, ...])|LabelSpreading model for semi-supervised learning.| |semi_supervised.SelfTrainingClassifier(...)|Self-training classifier.| ## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm) ||| |---|---| |**[svm.LinearSVC([penalty, loss, dual, tol, C, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC)**|**Linear Support Vector Classification.**| |**[svm.LinearSVR(*[, epsilon, tol, C, loss, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR)**|**Linear Support Vector Regression.**| |svm.NuSVC(*[, nu, kernel, degree, gamma, ...])|Nu-Support Vector Classification.| |svm.NuSVR(*[, nu, C, kernel, degree, gamma, ...])|Nu Support Vector Regression.| |**[svm.OneClassSVM(*[, kernel, degree, gamma, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM)**|**Unsupervised Outlier Detection.**| |**[svm.SVC(*[, C, kernel, degree, gamma, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)**|**C-Support Vector Classification.**| |**[svm.SVR(*[, kernel, degree, gamma, coef0, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR)**|**Epsilon-Support Vector Regression.**| |svm.l1_min_c(X, y, *[, loss, fit_intercept, ...])|Return the lowest bound for C.| ## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree) ||| |---|---| |tree.DecisionTreeClassifier(*[, criterion, ...])|A decision tree classifier.| |tree.DecisionTreeRegressor(*[, criterion, ...])|A decision tree regressor.| |tree.ExtraTreeClassifier(*[, criterion, ...])|An extremely randomized tree classifier.| |tree.ExtraTreeRegressor(*[, criterion, ...])|An extremely randomized tree regressor.| |tree.export_graphviz(decision_tree[, ...])|Export a decision tree in DOT format.| |tree.export_text(decision_tree, *[, ...])|Build a text report showing the rules of a decision tree.| |tree.plot_tree(decision_tree, *[, ...])|Plot a decision tree.| ## [sklearn.utils: Utilities](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils) see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils)