from tensorflow import keras from DataGenerator import DataGenerator number_of_classes: int = 10 size_of_batch_test: int = 100 model_id: int = 49 test_data = DataGenerator( train=False, size_of_batch=size_of_batch_test, number_of_classes=number_of_classes, do_shuffle=False, ) keras.backend.clear_session() network = keras.models.load_model("./Model_" + str(model_id) + ".h5") test_loss, test_acc = network.evaluate(x=test_data) print(f"Correct: {test_acc * 100.0:.2f}%")