# Creating networks {:.no_toc} ## The goal In these days, building networks is very important. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## A fast way to build a network with [Sequential](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential) ```python CLASS torch.nn.Sequential(*args: Module) ``` > A sequential container. Modules will be added to it in the order they are passed in the constructor. Example: ![image0](network_0.png) We can just chain the layers together: ```python import torch input_number_of_channel: int = 1 input_dim_x: int = 24 input_dim_y: int = 24 number_of_output_channels_conv1: int = 32 number_of_output_channels_conv2: int = 64 number_of_output_channels_flatten1: int number_of_output_channels_full1: int = 1024 number_of_output_channels_out: int = 10 kernel_size_conv1: tuple[int, int] = (5, 5) kernel_size_pool1: tuple[int, int] = (2, 2) kernel_size_conv2: tuple[int, int] = (5, 5) kernel_size_pool2: tuple[int, int] = (2, 2) stride_conv1: tuple[int, int] = (1, 1) stride_pool1: tuple[int, int] = (2, 2) stride_conv2: tuple[int, int] = (1, 1) stride_pool2: tuple[int, int] = (2, 2) padding_conv1: int = 0 padding_pool1: int = 0 padding_conv2: int = 0 padding_pool2: int = 0 number_of_output_channels_flatten1 = 576 network = torch.nn.Sequential( torch.nn.Conv2d( in_channels=input_number_of_channel, out_channels=number_of_output_channels_conv1, kernel_size=kernel_size_conv1, stride=stride_conv1, padding=padding_conv1, ), torch.nn.ReLU(), torch.nn.MaxPool2d( kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1 ), torch.nn.Conv2d( in_channels=number_of_output_channels_conv1, out_channels=number_of_output_channels_conv2, kernel_size=kernel_size_conv2, stride=stride_conv2, padding=padding_conv2, ), torch.nn.ReLU(), torch.nn.MaxPool2d( kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2 ), torch.nn.Flatten( start_dim=1, ), torch.nn.Linear( in_features=number_of_output_channels_flatten1, out_features=number_of_output_channels_full1, bias=True, ), torch.nn.ReLU(), torch.nn.Linear( in_features=number_of_output_channels_full1, out_features=number_of_output_channels_out, bias=True, ), ) print(network) ``` ```python Sequential( (0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1)) (1): ReLU() (2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False) (3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1)) (4): ReLU() (5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False) (6): Flatten(start_dim=1, end_dim=-1) (7): Linear(in_features=576, out_features=1024, bias=True) (8): ReLU() (9): Linear(in_features=1024, out_features=10, bias=True) ) ``` Congratulations you now have the network you wanted. ## Inspecting the network object ```python print(network.__dict__) ``` The output is: ```python {'training': True, '_parameters': OrderedDict(), '_buffers': OrderedDict(), '_non_persistent_buffers_set': set(), '_backward_pre_hooks': OrderedDict() '_backward_hooks': OrderedDict(), '_is_full_backward_hook': None, '_forward_hooks': OrderedDict(), '_forward_hooks_with_kwargs': OrderedDict(), '_forward_pre_hooks': OrderedDict(), '_forward_pre_hooks_with_kwargs': OrderedDict(), '_state_dict_hooks': OrderedDict(), '_state_dict_pre_hooks': OrderedDict(), '_load_state_dict_pre_hooks': OrderedDict(), '_load_state_dict_post_hooks': OrderedDict(), '_modules': OrderedDict([('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))), ('1', ReLU()), ('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))), ('4', ReLU()), ('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('6', Flatten(start_dim=1, end_dim=-1)), ('7', Linear(in_features=576, out_features=1024, bias=True)), ('8', ReLU()), ('9', Linear(in_features=1024, out_features=10, bias=True))])} ``` The obvious question is: What does this tell us? We see that the network is set to training mode but more importantly we can see our network architecture: ```python print(network.__dict__["_modules"]) ```python ```python OrderedDict([ ('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))), ('1', ReLU()), ('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))), ('4', ReLU()), ('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('6', Flatten(start_dim=1, end_dim=-1)), ('7', Linear(in_features=576, out_features=1024, bias=True)), ('8', ReLU()), ('9', Linear(in_features=1024, out_features=10, bias=True))]) ``` ## Using the network First we need some input data ```python input_number_of_channel: int = 1 input_dim_x: int = 24 input_dim_y: int = 24 number_of_pattern: int = 111 fake_input = torch.rand( (number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y), dtype=torch.float32, ) ``` Output: ```python output = network(fake_input) print(fake_input.shape) # -> torch.Size([111, 1, 24, 24]) print(output.shape) # -> torch.Size([111, 10]) ```