# Power and mean {:.no_toc} ## Top Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## The order is important You are not allowed to average over the trials before calculating the power. This is the same for calculating the fft power as well as the wavelet power. The worst case senario would be two waves in anti-phase: ```python import numpy as np import matplotlib.pyplot as plt t: np.ndarray = np.linspace(0, 1.0, 10000) f: float = 10 sinus_a = np.sin(f * t * 2.0 * np.pi) sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi) plt.plot(t, sinus_a, label="a") plt.plot(t, sinus_b, label="b") plt.plot(t, (sinus_a + sinus_b) / 2.0, "k--", label="(a+b)/2") plt.legend() plt.xlabel("t [s]") plt.show() ``` ![image0.png](image0.png) However if you have server randomly phase-jittered curves then something similar will happen. ```python import numpy as np import matplotlib.pyplot as plt t: np.ndarray = np.linspace(0, 1.0, 10000) f: float = 10 n: int = 1000 rng = np.random.default_rng(1) sinus = np.sin(f * t[:, np.newaxis] * 2.0 * np.pi + 2.0 * np.pi * rng.random((1, n))) print(sinus.shape) plt.plot(t, sinus) plt.plot(t, sinus.mean(axis=-1), "k--") plt.show() ``` ![image1.png](image1.png) And please remember the Fourier approach: Every curve can be decomposed in to sin waves.