# New matrices {:.no_toc} ## The goal Making a new matrix... Questions to [David Rotermund](mailto:davrot@uni-bremen.de) Using **import numpy as np** is the standard. ## Simple example -- new [np.zeros()](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html) Define the size of your new matrix with a tuple, e.g.​ ```python M = numpy.zeros((DIM_0, DIM_1, DIM_2, …))​ ``` ### 1d ```python import numpy as np M = np.zeros((2)) print(M) ``` Output: ```python [0. 0.] ``` ### 2d ```python import numpy as np M = np.zeros((2, 3)) print(M) ``` Output: ```python [[0. 0. 0.] [0. 0. 0.]] ``` ### 3d ```python import numpy as np M = np.zeros((2, 3, 4)) print(M) ``` Output: ```python [[[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]] ``` ## Simple example -- recycle [np.zeros_like()](https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html) If you have a matrix with the same size ​you want then you can use zeros_like. This will also copy other properties like the data type. as a prototype use​ N = numpy.zeros_like(M) ​ ```python import numpy as np M = np.zeros((2, 3, 4)) N = np.zeros_like(M) print(N) ``` Output: ```python [[[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]] ``` ## Remember unpacking {: .topic-optional} This is an optional topic! ```python import numpy as np d = (3, 4) M = np.zeros((2, *d)) print(M) ``` ## np.empty is not np.zeros If you are sure that you don’t care about what is inside the matrix in the beginning use​ ```python M = numpy.empty((DIM_0, DIM_1, DIM_2,...))​ ``` Empty claims a region in the memory and uses it for a matrix. Zeros goes one step further. It fills the memory with zeros. Thus random junk​ (i.e. data that was stored prior at that memory position) with be the content of a matrix if you use empty. However, np.empty() is faster than np.zeros(). ```python ​import numpy as np M = np.empty((10, 4)) print(M) ``` ```python [[1.66706425e-316 0.00000000e+000 6.89933729e-310 6.89933730e-310] [6.89933729e-310 6.89933730e-310 6.89933729e-310 6.89933730e-310] [6.89933730e-310 6.89933730e-310 6.89933729e-310 6.89933729e-310] [6.89933730e-310 6.89933729e-310 6.89933730e-310 6.89933729e-310] [6.89933730e-310 4.30513389e-317 4.30321296e-317 6.89933825e-310] [4.30389280e-317 6.89933822e-310 4.30366750e-317 6.89933822e-310] [4.30311810e-317 4.30480583e-317 4.30462401e-317 4.30336316e-317] [6.89933822e-310 4.30386513e-317 4.30358055e-317 4.30571886e-317] [4.30568724e-317 4.30659237e-317 6.89933822e-310 6.89933822e-310] [6.89933822e-310 6.89933822e-310 4.30289676e-317 6.89920336e-310]] ``` ## [From shape or value](https://numpy.org/doc/stable/reference/routines.array-creation.html#from-shape-or-value) ||| |---|---| |[empty](https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty)(shape[, dtype, order, like])|Return a new array of given shape and type, without initializing entries.| |[empty_like](https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like)(prototype[, dtype, order, subok, ...])|Return a new array with the same shape and type as a given array.| |[eye](https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye)(N[, M, k, dtype, order, like])|Return a 2-D array with ones on the diagonal and zeros elsewhere.| |[identity](https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity)(n[, dtype, like])|Return the identity array.| |[ones](https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones)(shape[, dtype, order, like])|Return a new array of given shape and type, filled with ones.| |[ones_like](https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like)(a[, dtype, order, subok, shape])|Return an array of ones with the same shape and type as a given array.| |[zeros](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros)(shape[, dtype, order, like])|Return a new array of given shape and type, filled with zeros.| |[zeros_like](https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like)(a[, dtype, order, subok, shape])|Return an array of zeros with the same shape and type as a given array.| |[full](https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full)(shape, fill_value[, dtype, order, like])|Return a new array of given shape and type, filled with fill_value.| |[full_like](https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like)(a, fill_value[, dtype, order, ...])|Return a full array with the same shape and type as a given array.|