# Unique {:.no_toc} ## The goal Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## [numpy.unique](https://numpy.org/doc/stable/reference/generated/numpy.unique.html) ```python numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True) ``` > Find the unique elements of an array. > > Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: > * the indices of the input array that give the unique values > * the indices of the unique array that reconstruct the input array > * the number of times each unique value comes up in the input array **unique can be used on multi-dimensional arrays. However, the results are strange since empty places need to be filled for shaping the results into one common matrix.** ```python import numpy as np a = np.arange(10, 21) print(a) # -> [10 11 12 13 14 15 16 17 18 19 20] idx = np.r_[0:5, 3:8] print(idx) # -> [0 1 2 3 4 3 4 5 6 7] print(a[idx]) # -> [10 11 12 13 14 13 14 15 16 17] print(np.unique(idx)) # -> [0 1 2 3 4 5 6 7] print(np.unique(a[idx])) # -> [10 11 12 13 14 15 16 17] ``` ## There are more return arguments available ```python import numpy as np a = np.r_[0:5, 3:8] print(a) # -> [0 1 2 3 4 3 4 5 6 7] values, unique_index = np.unique(a, return_index=True) _, unique_inverse = np.unique(a, return_inverse=True) _, unique_counts = np.unique(a, return_counts=True) print(values) # -> [0 1 2 3 4 5 6 7] print(unique_index) # -> [0 1 2 3 4 7 8 9] print(unique_inverse) # -> [0 1 2 3 4 3 4 5 6 7] print(unique_counts) # -> [1 1 1 2 2 1 1 1] ```